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Abstract

Top-k recommendations are ubiquitous, but are they stable? We study whether, given complete information, buy-

ers and sellers prefer to be in a platform using top-k recommendations rather than pursuing off-platform transactions

among themselves. When there are no constraints on the number of exposures, we show that top-k recommendations

are stable. However, stable k-recommendations may not exist when exposures are constrained, e.g., due to limited

inventory or exposure opportunities. We show that maximizing total buyer welfare under unit exposure constraints is

stable, Pareto optimal and swap-envy free in three restricted preference domains: orthogonal buyers, identical buyers,

and buyers with dichotomous valuations. We generalize these results to arbitrary exposure constraints, formulate a

polynomially-sized integer program to find stable recommendations (when they exist) and propose three other vari-

ants of common recommendation strategies adapted to satisfy exposure constraints. Experiments on three real-world

datasets find these recommendation strategies exhibit substantial instability and envy. Among them, maximizing total

buyers’ welfare leads to the most stable outcomes.

1 Introduction

Recommender systems play an important role in market making by matching buyers to products (and sellers) in large
online platforms. They do so by learning buyers’ preferences from past ratings and recommending to each buyer a
subset of products she would like, from which the buyer typically chooses one. Traditionally, recommender systems
focused on satisfying individual buyers, with the implicit assumption that matching buyers to products they like also
benefits sellers by increasing sales and attracting more buyers to the market.

Recent research, however, questions this assumption. Buyer-focused recommender systems can concentrate sales
on popular sellers and increase inequities (Fleder and Hosanagar, 2009). This poses a risk to online marketplaces,
since disgruntled sellers may withdraw inventory and target buyers through off-platform channels. As a result there
are calls to design recommender systems that serve all stakeholders — buyers, sellers, and the platform (Abdollahpouri
et al., 2020).

Such systems not only need to exhibit multi-sided fairness, but also respect different stakeholders’ constraints. For
example, recommending a physical good to more buyers than the number of available copies can result in a costly
stockout. For platforms like ad-networks, exposure is a limited resource. This, along with contracted guarantees on
exposures, limits how many times a seller can be recommended to potential buyers. Sellers, in turn, would like scarce
exposures to target buyers who give them the best chance of making a sale.

Would buyers and sellers, given complete information on preferences and constraints, like to participate in a plat-
form that uses a recommender system? Or, might some prefer to pursue off-platform transactions among themselves?
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Establishing whether top-k recommendations incentivize off-platform transactions is important for two reasons.
First, even in offline settings with high cost of discovery where a lack of complete information can let the market
operate for some time, it has been observed1 that unstable markets tend to unravel over time due to persistent incentives
(Roth, 1984, 2015). Second, competition among digital platforms increasingly facilitates multi-homing and other
forms of off-platform transactions ??.

1.1 Our Contributions

We start with McFadden (1973)’s choice model for the behaviour of a buyer who is recommended a set of items (or
choice set). We investigate three properties towards robust recommendations. Stability requires that both buyers and
sellers would prefer to continue participating via the recommendations made by the system rather than make side-deals
(Roth and Sotomayor, 1992). Pareto optimality (of buyer utilities) ensures efficiency, specifically, that increasing
the utility of any buyer comes at the cost of another. Envy-freeness guarantees that no buyer prefers to receive the
recommendations made to another over her own. We propose a relaxation of envy-freeness called swap-envy-freeness
up to one good (SEF1), which allows for envy but only to the extent that it can be eliminated by exchanging a pair of
recommended items.

We study the existence of stable recommendations in Section 3. In the absence of exposure constraints, we ob-
serve that top-k recommendations are stable, envy free, and Pareto optimal. In the presence of exposure constraints,
however, Theorem 3 shows that stable recommendations may not exist. Next, we identify three restricted prefer-
ence domains in which we show that maximizing the total expected buyer utility leads to stable, Pareto optimal and
SEF1 recommendations under unit exposure constraints. Notably, maximizing expected buyer utility under our choice
model is equivalent to maximizing the Nash welfare, with respect to the exponentiated utilities, which is known to
have several attractive fairness properties (Caragiannis et al., 2019). When buyers’ top-k item sets satisfy the exposure
constraints, recommending exactly those sets is clearly stable while maximizing buyer utility. We show in Section 3.1
that when buyers’ preferences are identical, as might be the case when the quality of an item is publicly known and
agreed upon, maximizing expected buyer welfare is again stable. In Section 3.2 we obtain similar positive results for
buyers with dichotomous values for items, where every item is either good or bad according to buyers (and buyers may
disagree on this assessment). These results generalize to arbitrary exposure constraints, with some caveats. Specifi-
cally, stability can not be guaranteed for identical buyers in general (see Example 9), though maximizing the expected
buyer welfare remains PO and SEF1 (Theorem 10). In the dichotomous value setting, swap-envy freenes is impossible
to guarantee, as we show in Example 12, but maximizing buyer welfare still guarantees stability and Pareto optimality
(Theorem 13).

Absent the guarantee of stable recommendations, we propose three recommendation strategies in Section 4. The
first algorithm draws on the theoretical results above and maximize expected buyer welfare (Section 4.1), though in
general this is not guaranteed to find a stable recommendation even when one exists. Round robin recommendations
are considered in Section 4.2 and shown to be SEF1 under unit exposure constraints (Theorem 15). Finally, we propose
a greedy form of top-k recommendations in Section 4.3 adapted to respect general exposure constraints. This mimics
decision-making in an online variant of the problem but is not guaranteed to return a recommendation that is stable,
PO or SEF1.

We conclude with a computational study using datasets collected from two e-commerce platforms (Amazon and
Rent-the-runway). The remaining strategies, though mirror what might be used in practice, are unstable and result in
a significant incentive to deviate from the proposed matches. Among them, maximizing buyers’ total utility leads to
the best outcomes.

1When matching interns to hospitals and matching children to schools.
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Our theoretical and computational results suggest that though stable recommendation may not always be possible,
maximizing buyers’ welfare often achieves a good trade-off between keeping buyers and sellers happy.

1.2 Related Work

In the recommender system literature, multi-stakeholder recommendations which consider all buyer, seller and plat-
form preferences are increasingly popular (Burke et al., 2016; Nguyen et al., 2017; Abdollahpouri et al., 2020). Fleder
and Hosanagar (2009) find that buyer-focused recommender systems can concentrate sales on popular sellers and in-
crease inequities among sellers. In contrast, we identify several settings where maximizing buyer welfare is aligned
with the stability of the market. The study of fairness in recommender systems is relatively recent and is sometimes in
the context of multi-objective recommendations (Ekstrand et al., 2022; Abdollahpouri and Burke, 2019; Ziegler et al.,
2005; Patro et al., 2020). Bateni et al. (2022) propose a stochastic approximation scheme based on the Eisenberg-Gale
convex program for online advertising system which maximizes platform revenue while being approximately fair to-
wards buyers. We similarly draw inspiration from the Eisenberg-Gale program to find a setting where the interests of
different stakeholders (buyers and sellers, in our case) are aligned. Like us, Patro et al. (2020) view fair recommenda-
tion as a fair allocation problem. They propose greedy version of round robin which is shown to be envy-free up to
one good (EF1) for buyers and guarantees sellers some minimum level of exposure. We consider an item’s purchase
probability as metric subject to satisfying exposure constraints rather than a minimum exposure level and go beyond
envy by additionally seeking stable recommendations.

There is a long literature on stable matchings dating back to the 1950’s (Stalnaker, 1953; Gale and Shapley, 1962),
for more thorough treatments we refer the interested reader to Roth and Sotomayor (1990) or Abdulkadiroglu and
Sönmez (2013). Recommending k items to a buyer reminds strongly of worker-firm (Kelso and Crawford, 1982)
or college admissions (Gale and Shapley, 1962) matching programs where workers (students) are matched to firms
(colleges), sometimes subject to quotas on the number of matches. Kelso and Crawford (1982) show that when
preferences satisfy a substitutability condition and when workers’ preferences depend only on the firm they apply to,
not their co-workers, then stable many to one matchings exist. Our setting does not satisfy these conditions, as the
purchase probability of an item depends directly on the other items recommended to the buyer. Indeed, items (and
their sellers) have preference orders not over buyers but over (buyer, choice set) pairs. This leads to complications even
with unit exposure constraints. In traditional deferred acceptance schemes, one side of the market proposes matches
to the other in order of their preferences, and matches are tentatively accepted until a better proposal comes along. In
our setting, the purchase probability of an item depends on all other items recommended to the same seller. Hence, the
seller of an item can not accurately judge the attractiveness of a buyer’s offer until the other k− 1 items in that buyer’s
choice set are fixed.

Envy-free allocations (Foley, 1967) and relaxations thereof (Lipton et al., 2004) have been studied for divisible
(Brams and Taylor, 1995; Procaccia, 2016) and indivisible goods (Alkan et al., 1991; Lipton et al., 2004; Caragiannis
et al., 2016) in both static and dynamic settings (Benadè et al., 2018; Zeng and Psomas, 2020). The concept of
Nash welfare, or the product of agent utilities, originated in John Nash’s solution to a bargaining problem (Nash,
1950). Maxmimizing Nash welfare when dividing indivisible goods among agents with additive utilities is known to
be EF1 and Pareto optimal (PO) (Caragiannis et al., 2016). Maximizing Nash welfare is NP-hard for several bidding
languages (Ramezani and Endriss, 2010); Caragiannis et al. (2016) propose a computational approach which scales
to reasonably sized instances. In a similar spirit to our work, two-sided fairness has recently received attention in the
fair division literature (Gollapudi et al., 2020; Freeman et al., 2021; Igarashi et al., 2022). Caragiannis and Narang
(2022) independently propose envy-freeness up to a single exchange of items in a setting where goods and chores
are repeatedly matched to agents and find that a variation of round robin allocation adapted for repeated matchings is
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both EF1 and SEF1. We make a similar observation for round robin allocations in Section 4.2 and further show that
maximizing expected buyer welfare is also SEF1. Igarashi et al. (2022) study the fair allocation of players to teams
where teams have additive values for players and players have a weak preference order over teams. It is found that
maximizing Nash welfare is EF1 and PO, as it is in the traditional one-sided case. Igarashi et al. (2022) also consider
two stability notions. An allocation is said to be swap stable when there is no pair of teams and players on those
teams so that swapping the players makes at least one of the four parties better off while leaving none worse off. An
allocation is individually stable when no player can deviate to another team without making one of the teams involved
worse off. Our notion of stability requires only that the deviating buyer and seller are strictly better off, not that the
other parties involved are no worse off.

2 Model

We study a setting in which each of a batch of buyers is simultaneously recommended k items, each item subject to
constraints on the number of times it is recommended. Let B denote a set of n buyers and I a set of m items. For
simplicity we assume every item is sold by a different seller, so we may occasionally refer to recommending sellers,
rather than items, to buyers.

A (k−)recommendation to buyer b ∈ B is a set of k items Āb ⊆ I, |Āb| = k. In addition to Āb, buyer b has (fixed)
outside option ωb available which represents not selecting any of the recommended items and instead sticking with
the status quo or pursuing an off-platform transaction. Let Ab = Āb ∪ {ωb}. We call the vector of recommendations
A = (Ab)b∈B a recommendation profile. Let A−1i = {b ∈ B : i ∈ Ab} denote the buyers recommended item i. A
recommendation profile is feasible if it satisfies constraints on the number of exposures received by each item, encoded
as |A−1i | = ci for all i ∈ I. Let A denote the set of feasible recommendation profiles.

We occasionally restrict our analysis to the unconstrained (ci = ∞ for all i ∈ I) and unit constrained (ci = 1 for
all i ∈ I) settings. Under unit exposure constraints each item is recommended to only one buyer. We overload notation
and let A−1i refer to the buyer recommended item i ∈ I and generally use i interchangeably with the singleton set {i}.

Buyer behavior is assumed to follow a standard choice model. Buyer b ∈ B has utility Vbi = vbi + εbi for item
i ∈ I, where vbi is the observable value that b has for i and εbi, drawn independently and identically from a Gumbel
distribution,2 is a random utility component which is unknown in advance and captures unobserved determinants of
item utility. We take values vbi as arbitrary and known, for example, it may have been estimated from incomplete
data using a collaborative filter. Buyer b has value vbω for outside option ωb, which reflects the utility derived from
pursuing an off-platform transaction. For ease of exposition we assume all buyers have vbω = vω . This assumption is
not critical: when buyers have outside options of different quality we can denote with v′bi = vbi − vbω the normalized
utility of item i — all our results remain true in terms of normalized utilities.

Per choice model theory, buyer b ∈ B considering choice set S realises the unknown random components of their
utility functions, then deterministically selects the option i ∈ S that provides greatest utility. At the time of recom-
mendation, a buyer’s welfare, her expected utility from the entire choice set, is given by vb(S) = E (maxi∈S(Vbi)) =

log
(∑

i∈S e
vbi
)

(Williams, 1977). The value profile associated with recommendation A is v(A) = (vb(Ab))b∈B.
For convenience we call ubi = evbi the virtual value of buyer b for item i, set ub(S) =

∑
i∈S e

vbi and call
u(A) = (ub(Ab))b∈B the virtual value profile. Notice that vb(S) = log ub(S).

It has been shown that, at the time of recommendation, the probability that option i will be selected from choice
set S is P(b, i, S) = evbi/

∑
j∈S e

vbj . Under unit exposures, the probability of item i ∈ I being purchased under A
is P(i, A) = P(A−1i , i, AA−1

i
), and generally P(s,A) =

∑
b∈A−1

i
P(b, i, Ab). The welfare of (the seller of) item i is

2Also called a type I extreme value distribution.
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assumed only to be increasing in P(i, A), which is flexible enough to accommodate different sellers having different
profit margins.

Notice that buyers have a fixed preference order over I ∪ {ω}, as determined by {vbi : ∀i ∈ I{ω}}, regardless
their choice set. However, sellers of items do not have a fixed preference order over buyers: the probability of a sale
depends not only on how much the buyer values the item, but also on the total virtual value of other items in that
buyer’s choice set.

2.1 Measuring The Quality of a Recommendation

Efficiency One natural requirement is that the recommendation profile is Pareto optimal (PO) with respect to buyers’
welfare. Let [n] = {1, . . . , n}. Formally, a vector x ∈ Rn strictly dominates y ∈ Rn when xi ≥ yi for all i ∈ [n]

and there exists j ∈ [n] where xj > yj . A recommendation A ∈ A is Pareto optimal if there does not exist another
recommendation A′ ∈ A such that v(A′) strictly dominates v(A). Notice that v(A) is undominated exactly when
u(A) is undominated.

Fairness A standard notion of fairness is called envy-freeness, which we study from the buyers’ perspective. Envy-
freeness requires that every buyer prefers their choice set over the choice set of any other buyer. Formally, rec-
ommendation profile A is envy-free when vb(Ab) ≥ vb(Ab′) (equivalently, ub(Ab) ≥ ub(Ab′)) for all b, b′ ∈ B .
Envy-freeness is often impossible with indivisible objects — consider allocating a single valuable item to two agents.
As a result, envy-freeness is commonly relaxed to envy-freeness up to one item (EF1) for indivisible goods, which al-
lows envy but only to the extent that it can be eliminated by removing a single item from the envied agent’s allocation.
In our setting, each buyer must be recommended exactly k items and simply removing an item from a buyer’s choice
set is not an option. We propose a new relaxation of envy-freeness, called swap-envy-freeness, to capture this. We say
a recommendation profile is swap-envy-free up to 1 item (SEF1) when any pairwise envy between buyers b 6= b′ ∈ B
can be eliminated by exchanging a single pair of items between them. Formally, A is SEF1 if, for all b, b′ ∈ B where
b envies there exist a pair of items i ∈ Ab, j

′ ∈ Ab′ so that vb(Ab ∪ j \ i) ≥ vb(Ab′ ∪ i \ j).

Stability Pareto optimality and (swap-)envy-freeness both consider only buyer welfare. However, they do not guar-
antee that buyers and sellers won’t have incentives to deviate from a recommendation profile. A buyer-item pair
(b, i) ∈ B × I is called a blocking pair in recommendation profile A if both the buyer and the item’s seller strictly
benefit from b replacing some item j in Ab with i. Formally, (b, i) blocks when i 6∈ Ab and there exists a seller j ∈ Ab

so that both vbi > vbj and P(i, A) < P(b, i, Ab ∪ i \ j). To handle general exposure constraints and the possibility that
j ∈ Ac, we further require that the recommendation profile resulting from the deviation can be feasibly extended to
a full recommendation. This condition has no bite for the unconstrained and unit exposure settings, and is elsewhere
equivalent to assuming that there are dummy items available for which ever buyer has the lowest possible value. A
recommendation profile is stable in the absence of a blocking pair.

We illustrate some differences between these concepts with an example.

Example 1. Consider an instance with buyers {1,2}, four items {a, b, c, d} and k = 2. Table 1 shows the virtual

values for an instance with identical buyers and two good and two bad items.

Let’s assume each item can be recommended only once. The recommendation profile ({a, b}, {c, d}) is Pareto

optimal even though it recommends both good items to the same buyer. It is also SEF1, although buyer 2 envies buyer

1: swapping b with c removes the envy. Furthermore, it is unstable with blocking pair (2, b): 2 prefers b over both c

and d, and b has a larger probability of being purchased by 2 in the choice set {b, c} than by 1 in the choice set {a, b}.
Recommendation profile ({a, c}, {b, d}) is Pareto optimal, envy free and stable.
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a b c d

Buyer 1 2 2 1 1
Buyer 2 2 2 1 1

Table 1. Buyers’ virtual values.

3 On The Existence of Stable Recommendations

We investigate the conditions under which stable recommendations exist. When the exposure constraints are not
binding, there is no need to do anything more complicated than recommending each buyer their k highest value items.

Observation 2. In any instance where the exposure constraints are not binding, for example when ci = ∞ for all

i ∈ I, or all buyers have disjoint sets of top-k items, recommending each buyer their k most liked items is feasible,

stable, welfare optimal and envy-free.

Stability, here, is a direct result of the fact that a buyer who is recommended their k highest value items will be
unwilling to participate in a blocking pair. To the best of our knowledge, this property of top-k recommendations
has not been discussed before. It is worth pointing out because capacity constraints generally do not exist for digital
products, a category of goods in which recommendation systems are often deployed, so it is reassuring to know that
top-k recommendation is stable.

Unfortunately, binding exposure constraints preclude the existence of stable recommendations.

Theorem 3. Under unit exposures, there exist instances where no stable recommendation exists.

Proof. Consider the instance in Table 2 with buyers {1, 2} and sellers {a, b, c, d}. We argue that this instance with
k = 2 does not permit a stable recommendation.

a b c d

Buyer 1 10 0 7 6
Buyer 2 10 8 4 5

Table 2. Buyers’ virtual values for each seller.

SinceA2 = S \A1, we need only check all possibleA1. ForA1 ∈ {{ac}, {ad}}, (2, a) is a blocking pair as buyer
2 prefers a over all their recommended sellers and would be willing to eject seller b from their current choice set. For
A1 ∈ {{ab}, {bc}, {bd}}, (2, b) blocks, since 2 will always be willing to accept b (it is one of 2’s top-2 items), and b’s
purchase probability, which is 0 when it is recommended to buyer 1, increases. Finally, for A1 = {c, d}, (1, a) blocks
since a is 1’s most liked item and the purchase probability of a is higher when competing with c or d in 1’s choice set
than when competing with b in 2’s choice set.

The fact that stability can not be guaranteed should not come entirely as a surprise. For example, Pycia (2012)
show that stable coalitions can only be guaranteed when over any two coalitions all common members prefer the same
coalition. In our setting, recommendations are the coalitions of a buyer and k sellers. If the buyer obtains higher
welfare by changing some items of the choice set, the purchase probability of the remaining items must reduce due to
increased competition. As a result, buyers and sellers of remaining items prefer opposing choice sets.

A closer look at the instance in Theorem 3 reveals two situations which may lead to the existence of blocking
pairs. First, whenever b was allocated to buyer 1, the massive discrepancy in in the buyers’ values for item b created
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the potential for b to increase its purchase probability by deviating from the recommendations. Second, the allocations
with b ∈ A2 lead to a large disparity in the bundle values, specifically, |u1(A1)− u2(A2)| ≥ 4. When the choice sets
are not equally competitive even an item valued identically by the buyers may participate in a blocking pair, as shown
by the blocking pair (2, a) in allocation A1 = {a, c}, A2 = {b, d}. We can formalize this intuition that the incentive to
participate in a blocking pair depends on the degree to which buyers value the same item similarly and the difference
in competition across choice sets.

Definition 4 (α-balance). The valuations of an item i is called αi-balanced if ubi ≤ αi · uci for all b, c ∈ B. When

each i ∈ I is αi-balanced, the instance is called α-balanced, with α = maxi αi.

When buyers have identical values the instance is 1-balanced. Next we parameterize the level of competition
across choice sets.

Definition 5 (β-impartiality). An allocation A is called β-impartial when β is the smallest value such that ub(Ab) ≤
β · uc(Ac) for all b, c ∈ B. 3

For an arbitrary allocation A with blocking pair (b, i) 6∈ A, let A′ denote an allocation with A′b = Ab ∪ i \ j for
some j ∈ Ab. For example, under unit constraints if i ∈ Ac then A′ can be identical to A except that A′b = Ab ∪ i \ j
and A′c = Ac ∪ j \ i, in other words, the allocation that results from A when b deviates with i and the item ejected
from Ab is recommended to c. We can upper bound the benefit from participating in a blocking pair in terms of the
balancedness of the instance and the impartiality of A.

Theorem 6. Consider an α-balanced instance with β-impartial allocation A with i ∈ Ac. For any blocking pair

(b, i) of A, the multiplicative gain of buyer b and seller i when deviating from A to A′ (as defined above) can be upper

bound as
P(i, A′)

P(i, A)
≤ αiβ ≤ αβ, and

ub(A
′
b)

ub(Ab)
< αiβ ≤ αβ.

As an example, consider allocation A1 = {a, c}, A2 = {b, d} in the instance of Theorem 3 which has αa = 1

and β = 17
13 , implying a maximum benefit of 17

13 ≈ 1.3. Participating in the blocking pair (2, a) increases seller a’s
purchase probability by a factor of 10/15

10/17 ≈ 1.13, while buyer 2’s welfare increases by a factor of 15
13 ≈ 1.15.

In the remainder of this section we study two other restricted preference domains, identical buyers and dichotomous
values, where it is possible to guarantee stability. Omitted proofs may be found in the appendix.

3.1 Identical Buyers

Suppose buyers agree on a common evaluation vi of each item i, i.e. vi = vbi for all b ∈ B, i ∈ I.
Let A∗ be a recommendation profile which maximizes total buyer welfare.4 In other words, A∗ is a solution of

max
A∈A

{∑
b∈B

log

(∑
i∈Ab

evbi

)}
≡ max

A∈A

{∑
b∈B

log(ub(Ab))

}
≡ max

A∈A

{∏
b∈B

u(Ab)

}
.

Notice that maximizing buyer welfare equivalently maximizes the Nash welfare (product of utilities) with respect
to the virtual values. In the fair division literature, maximizing Nash welfare (on item values) is known to be EF1 and
PO (Caragiannis et al., 2019). It also works here in the case of unit exposure constraints.

3In a similar spirit to αi-balancedness above one could consider consider βb-impartiality, where βb is the smallest value so that ub(Ab) ≤
βbuc(Ac) for all c ∈ B.

4Incidentally, recommending each buyer her top-k maximizes the total buyer welfare when exposure constraints are not restrictive.
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Theorem 7. For buyers with identical preferences under unit exposure constraints, A∗ is stable, PO and SEF1.

We rely on the following technical lemma, which is straightforward to verify.

Lemma 8. For all x, y ≥ 0 satisfying x+y = C for a fixed constant C, xy is monotonically increasing in min{x, y}.

Proof sketch for Theorem 7. By Lemma 8, maximizing the product of agent virtual values will encourage the agent
virtual values to be as similar as possible. Since buyers have identical values, a seller s currently allocated to buyer b
will only participate in a blocking pair (c, s) if she faces less competition post transfer. This would imply buyer c’s
value for their allocation (post-deviation) is lower than b’s value for their original allocation. We show this contradicts
A∗ being an optimal solution by lemma 8, stability follows. SEF1 is a result of agents having similar bundle virtual
values and the monotonicity of the logarithm: if the allocation was not SEF1 there would exist a swap which increases
the objective function (by lemma 8). Pareto optimality follows from A∗ being a maximizer.

Under unit exposure constraints, maximizing the product of virtual values leads to choice sets that are competitive
enough to prevent profitable deviations. As the following example shows, general exposure limits can lead to less
competitive choice set. As a result, maximizing buyer welfare is not guaranteed to be stable.

Example 9. Consider the following instance with n = 2, k = 3 and six unique items and values and capacities

as in Table 3. We may assume buyer 1 receives the most valuable item (the other case is symmetric). The resulting

recommendation which maximizes the product of buyers’ virtual values (equivalently, expected welfare) is indicated

with checkmarks.

Consider transferring a to 2, displacing b from 2’s current choice set. The only resulting recommendation is boxed

(1 can not be recommended a second copy of b). Buyer 2’s total virtual value increased from 19 to 21. Item a’s

purchase probability also increased, from 12
25 < 0.5 to 12

21 > 0.5. We conclude that (2, a) is a blocking pair. As such,

the recommendation found by maximizing buyer welfare is not stable.

Notice that in the corresponding instance with seven items (two distinct items with value 10) and unit constraints

the product maximizing choice sets are more competitive with virtual values 21 and 23, rather than 19 and 25.

a b c d e f

Values 12 10 5 4 3 3
Capacity 1 2 1 1 1 1

Buyer 1 X X X

Buyer 2 X X X

Table 3. Buyers’ virtual values.

Despite stability breaking down, A∗ remains PO and SEF1. The argument for SEF1 requires showing that when-
ever a buyer envies another, there exists a feasible exchange of items which decreases that envy. Because buyers have
identical values, it is possible to show that any swap decreasing envy either eliminates the envy completely or increases
the product of virtual values.

Theorem 10. Under general exposure constraints, A∗ is PO and SEF1 for buyers with identical preferences.

3.2 Dichotomous Values

Consider the case where buyers have dichotomous preferences and has either high or low value for every item (and is
indifferent among items of each type). Formally, assume vbi ∈ {a, a′} for all b ∈ B and i ∈ I, for some real-valued
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a < a′. Note that buyers need not agree on the evaluation of an item: it may be acceptable to some and unacceptable
to others. Nor do they need to prefer disjoint sets of items. In this setting, maximizing the total buyer welfare (or
maximizing Nash welfare with respect to the virtual values) again leads to stability.

Theorem 11. For buyers with dichotomous values, A∗ is stable, PO and SEF1 under unit exposure constraints.

Proof. To ease exposition, set ` = ea and h = ea
′
. We show that maximizing the product of buyer virtual values,

which is equivalent to maximizing buyer welfare, is stable, PO and SEF1.
Stability: Assume, for contradition, A∗ is not stable. Then there exists a blocking pair (b, i) ∈ B × I. Let c be the

buyer to whom i is currently recommended.
Observe that b’s choice set contains at least one low-valued seller, otherwise she can not participate in a blocking

pair. Let j ∈ A∗b be such an item with ubj = `. ConstructA′ fromA∗ by exchanging i and j. SoA′b = A∗b +i−j, A′c =

A∗c + j − i and A′d = A∗d for all d ∈ B \ {b, c}.
We now study the possible values of (ubi, uci):

1. (`, `): Participating in a blocking pair requires displacing a buyer with strictly lower value, which is not possible
since ubi = `. This contradicts (b, i) being a blocking pair.

2. (`, h): Again, ubi = `, which contradicts (b, i) being a blocking pair.

3. (h, `): In this case i is assigned to c despite c having low and b having high value for it. It follows that
ub(A

′) = ub(A
∗) − ` + h > ub(A

∗) and uc(A′) = uc(A
∗) − ` + uc(j) ≥ uc(A

∗). However, this implies
ub(A

′) · uc(A′) > ub(A
∗) · uc(A∗), contradicting the fact that A∗ maximizes the product of virtual values.

4. (h, h): Suppose that ucj = h. Now ub(A
′) > ub(A

∗) and uc(A′) = uc(A
∗), contradicting that A∗ maximizes

the product of virtual values. We conclude that ucj = ` and thus ub(A′) + uc(A
′) = ub(A

∗) + uc(A
∗), so we

can apply Lemma 8.

We now compare min{ub(A∗b), uc(A
∗
c)} and min{ub(A′b), uc(A′c)}. A condition for (b, i) being a blocking

pair is that i increases their purchase probability by deviating, which implies ubi/ub(A′b) > uci/uc(A
∗
c). Since

ubi = uci = h, it follows that ub(A′b) < uc(A
∗
c). Similarly, b improves their utility by participating in the

blocking pair, so ub(A∗b) < ub(A
′
b). It follows that ub(A∗b) = min{ub(A∗b), uc(A

∗
c)}. It remains to compare

ub(A
∗
b) and uc(A′c). Now

uc(A
′
c) = uc(A

∗
c) + `− h > ub(A

′
b) + `− h = (ub(A

∗
b) + h− `) + `− h = ub(A

∗
b)

which implies ub(A∗b) < min{ub(A′b), uc(A′c)}. By lemma 8, this contradicts A∗ maximizing the product of
virtual values.

We conclude there exists no blocking pair (b, i), and thus that A∗ is stable.
SEF1: Suppose, for contradiction, that A∗ is not SEF1 with respect to the virtual values. This means there exists

buyers b, c so that b envies c after every pairwise swap of items, i.e.

ub(A
∗
b) + ubi − ubj < ub(A

∗
c)− ubi + ubj for all j ∈ A∗b , i ∈ A∗c .

Consider arbitrary j ∈ A∗b and i ∈ A∗c so that ubj = ` and ubi = h (such items exist since b envies c). If it were the
case that uci = `, then it would be possible to increase the product of utilities by exchanging i and j (b is better off
and c is no worse off). The maximimality of A∗ thus implies that uci = h. We similarly conclude that ucj = `. This
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means both buyers agree that every item j ∈ A∗b with ubj = ` is a low value item, and similarly every i ∈ A∗c with
ubj = h is a high value item.

Let Hb = {j : ubj = h} and Lb = {j : ubj = `}, and define Hc, Lc analogously. We’ve established that
Hb ∩A∗c ⊆ Hc ∩A∗c and Lb ∩A∗b ⊆ Lc ∩A∗b .

Construct A′ from A∗ by exchanging i and j. So A′b = A∗b + i − j, A′c = A∗c + j − i and A′d = A∗d for all
d ∈ B \ {b, c}. Notice that, since b and c values i and j identically, ub(A∗b) = uc(A

∗
c) = ub(A

′
b) + uc(A

′
c) so we are

in a position to apply Lemma 8 if appropriate.
SinceA∗ is not SEF1, ub(A′b) < ub(A

′
c).Buyer c receives an ` item in exchange for an h one, so uc(A′c) < uc(A

∗),

similarly ub(alloc′b) > ub(A
∗
b). Because c also has high value for those items in A′c that b has high value for,

ub(A
′
c) = ub(A

′
c ∩Hb) + ub(A

′
c ∩ Lb)

= h · |A′c ∩Hb|+ ` · |A′c ∩ Lb|

= uc(A
′
c ∩Hb) + ` · |A′c ∩ Lb|

≤ uc(A′c ∩Hb) + uc(A
′
c ∩ Lb) = uc(A

′
c).

Putting it all together shows ub(A∗b) < ub(A
′
b) < ub(A

′
c) ≤ uc(A

′
c) < uc(A

∗
c), so exchanging i and j increases the

minimum utility. By Lemma 8, this contradicts A∗ maximizing the product of virtual values. We conclude that A∗ is
SEF1 in terms of virtual values. SEF1 in terms utility follows from the fact that a buyer’s utility is monotone in their
virtual values.

Pareto optimality: This follows directly from A∗ being welfare maximizing.

As was the case for identical buyers, not all these properties generalize to arbitrary exposure constraints. Carefully
chosen exposure constraints can force a situation where the choice sets of two buyers have to overlap. Suppose one
buyer values the commonly recommended items much lower than other and the buyers agree on which of the other
items are good or bad. Maximizing buyer welfare will result in allocating the good items to the buyer who values the
common set least, and the bad the items to the other. This may create more envy than what can be eliminated by a
single exchange of items. The following example illustrates this.

Example 12. Consider the following instance with n = 2, k = 15 and 20 unique items of three different types. There

are ten unique items of type a, each with exposure limit two and v1a = 2, v2a = 1. There are five unique items of type

b, each with exposure limit one and v1b = 2, v2b = 2. There are five items of type c, each with exposure limit 1, which

both buyers value at 1. The instance is summarised in Table 4

The unique recommendation which maximizes the product of buyers’ virtual values (equivalently, expected welfare)

is boxed in Table 4: Buyer 1 is recommended all items of type a and c, and buyer 2 all items of types a and b. Buyer 1

has virtual value 25 for her own choice set and 30 for buyer 2’s set, so buyer 1 envies buyer 2. Since virtual values are

at most two, no single exchange of items can eliminate this envy and the recommendation is not SEF1 with respect to

virtual values. By monotonicity of the logarithm, the swap envy will remain present when converting the virtual values

into expected utilities.

Stability and Pareto optimality, however, can still be guaranteed. The proof that stability holds is largely similar to
the unit exposure case, where the existence of a blocking pair contradicted A∗ being welfare maximizing. The main
wrinkle is that the seller ejected from the deviating buyer’s choice set may already be recommended to the buyer who
suffered from the deviation, so care must be taken when constructing the alternative recommendation A′.

Theorem 13. Under general exposure constraints, A∗ is stable and PO for buyers with dichotomous values.
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Item type a b c
# of items 10 5 5
Capacity 2 1 1

Buyer 1 2 2 1

Buyer 2 1 2 1

Table 4. Buyers’ virtual values.

3.3 Other Restricted Preference Domains

We briefly remark on two other common structured preference domains. First, suppose buyers have factored util-
ity structure: each buyer b is associated with a characteristic vector βb, each item i with similar vector γi, and
vbi = 〈βb, γi〉. A stable recommendation need not exist in setting: the instance in the proof of Theorem 3 can be
(approximately) factorized. Second, when buyers have identical preference orders over the items (but potentially
different values) a stable recommendation always exists under unit exposures for instances with n = 2, k = 2, but
existence is not guaranteed for larger instances. Full details appear in the appendix.

4 Recommendation Strategies Under Exposure Constraints

Despite it not being possible to guarantee stability for general instances, one my still attempt to find a stable rec-
ommendation on those instances that permit it. In Appendix A.4 we construct a polynomially-sized integer program
which find stable recommendations when they exist and otherwise minimizes the largest incentive any seller has for
participating in a blocking pair. Unfortunately, this approach does not appear to scale to realistic instances.

In this section we propose three alternative practical recommendation strategies that can accommodate constraints
on number of exposures per product. Throughout the remainder of this paper we focus on the case of unit constraints,
but all strategies are simple to modify to arbitrary capacity constraints.

4.1 Maximizing Total Buyer Welfare

A common platform objective is to maximize the total buyer welfare, which was shown to have the additional benefit
of leading to stable, fair and efficient recommendations in specific preference domains. The resulting problem is

maximize
∑
b∈B

log

(∑
i∈I

ev̂bixbi

)
s.t.

∑
b∈B

xbi = 1, for all i ∈ I (unit capacities)∑
i

xbi = k, for all b ∈ B, and (k-recommendations)

xbi ∈ {0, 1}, for all b ∈ B, i ∈ I,

where xbi = 1 when i appears in b’s choice set. This is equivalent to maximizing the Nash welfare (product of utilities)
with respect to virtual values ubi = ev̂bi , which is NP-hard (Nguyen et al., 2013).

Because the total buyer welfare is directly maximized, buyers may be less willing to cooperate in deviations.
However, even for unit capacities maximizing buyer welfare is not guaranteed to find a stable recommendation in
instances where one exists.
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Example 14. Consider the instance in Table 5. The recommendation that maximizes buyer welfare isA1 = {a, d}, A2 =

{b, c} (boxed in Table 5), however, (1, c) is a blocking pair. At the same time, the underlined recommendation

A1 = {c, d}, A2 = {a, d} is stable.

a b c d

Buyer 1 10 6 3 1

Buyer 2 10 9.5 0.5 0.25

Table 5. Buyers’ virtual values.

4.2 Round Robin Recommendations

This strategy fixes a permutation of buyers, then cycles through the buyers k times. At each step, the active buyer is
assigned their highest value item from the remaining items.

In the instance of Example 1, round robin results in each buyer being recommended one high value item and one
low value item. An advantage of round robin over greedy top-k, is that common high value items are shared among
buyers. This may increase the probability of purchase for high value items by avoiding hyper-competitive choice
sets. That round robin leads to approximately equal welfare across buyers further suggests that all choice sets will
be similarly competitive. This reinforces the expectation that sellers may have less incentive to deviate, which would
make stability more likely.

We can show that round robin, which is EF1 in general settings, is SEF1, though it need not be stable or PO.

Theorem 15. Round robin is SEF1.

Proof. LetA be the round robin allocation. Suppose for contradictionA is not SEF1. Then there exists buyers b, c ∈ B
so that b envies c after every exchange of items between their allocations. We may assume without loss of generality
that b was after c in the permutation of buyers, otherwise b would not envy c. We ignore the other buyers, since their
bundles do not affect b’s envy towards c.

Label Ab = {b1, b2, . . . , bk} and Ac = {c1, c2, . . . , ck}, where items are indexed in the order they are assigned.
This implies, ub(bi) > ub(bj) and similarly uc(ci) > uc(cj) whenever j > i.

By the nature of round robin, when b selected bi, all cj , j > i were still unassigned. This implies ub(bi) >

ub(ci+1) for all i ∈ [k − 1]. By assumption, b envies c, so
∑

i∈[k] ub(bi) <
∑

i∈[k] ub(ci). Since
∑

i∈[k−1] ub(bi) >∑
i∈[k−1] ub(ci+1), it follows that ub(c1) > ub(bk).

Let j = arg maxj∈[k] ub(cj) be the index of the item in Ac that b likes most. Create a new allocation A′ by
swapping bk and cj and leaving the other buyers unchanged, so A′b = Ab− bk + cj , A′c = Ac + bk − cj and A′d = Ad

for all d ∈ B \ {b, c}.
We will proceed to match items in A′b and A′c so that b always likes the item they received more that the corre-

sponding item that c received. The existence of such a matching clearly implies that b does not envy c after summing
over all pairs. Consider the following cases:

• j = 1 : A′b = {c1, b1, . . . , bk−1} and A′c = {bk, c2, . . . , ck}. By assumption, ub(c1) > ub(bk), so we may
match c1 and bk. We can also match bi and ci+1 for all i ∈ [k − 1], since we know ub(bi) > ub(ci+1) by the
nature of round robin. We conclude that b does not envy c in A′.

• j > 1 : A′b = {cj , b1, . . . , bk−1} and A′c = {c1, . . . , cj−1, cj+1, . . . , ck, bk} (possibly with 1 = j − 1 or
j + 1 = k). By choice of j, ub(cj) > ub(c1), so match cj and c1. For all i ∈ [k − 1] \ {j − 1}, match bi and
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ci+1 as before. Finally, note that ub(bj−1) > ub(bk) since it was assigned to b earlier during the round robin
procedure, so we can match bj−1 and bk and conclude that b does not envy c in A′.

In either case, we arrive at a contradiction. We conclude that round robin is SEF1.

4.3 Greedy Top-k

This strategy iterates over buyers in a random order and assigns each buyer the choice set of size k which would
maximize her welfare. This mimics how recommendations are typically made online. Buyers arrive on a website one
at a time, and the site recommends the set of items that would provide the buyer the highest utility without considering
future arrivals. Despite the popularity of this approach, it is particularly susceptible to instability, especially when
buyers agree that some items are superior to others.

Consider the instance in Example 1. The greedy strategy will assign both high value items to first buyer, leaving
the other buyer with both low value items. Sellers of both the high value items would get a higher purchase probability
by displacing one of the two low value items in the second choice set. The second buyer will accept such displacement
because it increases her welfare. As a result, the greedy recommendation is unstable. Identical values are not required
for instability: any overlap in buyers’ top-k items suffices.

Greedy top-k also fails to satisfy basic fairness and efficiency properties. Consider an instance with two buyers
and k ≥ 4 and assume that buyer 1 has value 1 for all items. Without loss of generality, suppose that items [k] are
included in buyer 1’s choice set. Set buyer 2’s values as follows: they value items [k] at 1 and the remainder at 0.
Because buyer 1 is considered first, without regard for other buyers, buyer 2 is recommended items {k + 1, . . . , 2k}
which they have 0 value for. The resulting recommendation is clearly neither Pareto optimal nor SEF1.

Proposition 16. Greedy top-k recommendations need not be stable, SEF1 or Pareto optimal.

5 Measuring Instability in Real World Datasets

Theorem 3 shows that there are instances where stability is impossible, but it may be the case that such instances are
extremely rare. Moreover, even in the absence of stability it is possible that there are very few sellers who participate
in blocking pairs, or that they have so little to gain from deviating from the match that it is practically irrelevant. In
this section we investigate whether common recommendation strategies lead to stable recommendations in real-world
datasets and, if not, whether sellers have a significant incentive to deviate from the recommendation. We do this
by predicting ratings (v̂bi) for all buyer–item pairs and deploying recommender systems in three real world datasets.
Throughout this section we assume unit exposure constraints.

5.1 Datasets

We use three datasets for our experiments: two containing customers’ ratings on products from Amazon (in the Au-
tomotive and Musical Instruments categories) and one containing renters’ ratings on clothing from Rent-the-runway
(Table 6). These are classic physical goods markets with a natural capacity constraint dictated by inventory levels.
Amazon is a platform that matches buyers to third-party sellers. Rent-the-runway is becoming a platform where mul-
tiple suppliers directly maintain their portfolio of garments (Chang, 2018). As such, suppliers’ incentive to participate
in any recommender system used by these platforms become salient.
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Table 6. Summary of datasets used in the experiments.

Rating summary

Dataset # users # items # ratings Min Median Avg. Max

Amazon Automotive 193651 79437 1711519 1 5 4.46 5
Amazon Musical Instrument 27530 10620 231392 1 5 4.47 5
Rent the Runway 105508 5850 192462 2 10 9.09 10

Note: All data are available at https://cseweb.ucsd.edu/∼jmcauley/datasets.html. We use the full Rent-the-runway dataset. For Amazon, we use
the small, dense subsets with buyers and items that occur at least five times.

5.2 Experiments

We simulate the following scenario. On any given day a subset of the buyers visit the platform. The platform recom-
mends k = 5 items to each buyer. For simplicity, we assume that the platform has only one copy of each item in its
inventory and does not recommend any item to more than one buyer to avoid the risk of stockout.

We train SVD++, a matrix factorization based collaborative filter, on the entire dataset (Koren, 2008).5 We ran-
domly select B ∈ {50, 100, 200} buyers and k × B items to form a pool of buyers and items to be matched. The
collaborative filter’s predicted ratings for each buyer-item pair is used as the buyer’s value for the item. We track five
metrics for each recommendation strategy:

1. Move: the percentage of sellers who participate in a blocking pair, i.e. are able and prefer to move to another
buyer. This measures how widespread the incentive to deviate is.

2. Gain: the average percentage improvement in purchase probability of such sellers if they deviated to maximize
their purchase probability. This measures how strong the incentive is.

3. Welfare: the average buyer welfare from their recommended choice sets. All else being equal, a platform would
like to provide its buyers higher welfare.

4. Envy: the percentage of buyers who envy another. Lower envy may signal that the recommendation treats
buyers more equally.

5. Swap Envy: the percentage of buyers who envy another even after their most preferred exchange of items. Low
swap envy implies that whatever envy exists is limited (it can be removed by a single swap).

We draw 16 random buyer-item pools for each dataset and report average metrics in Table 7.
There is widespread and substantial incentive to deviate from the matchings formed by top-k recommendation

under each of these strategies. Greedy top-k is particularly problematic, nearly all sellers participate in blocking pairs,
and they often stand to improve their expected sales by more than 100% by deviating from the system’s match.6

While most of the sellers would still like to deviate under the other strategies, their potential gain from doing so is
substantially lower. Maximizing total buyer welfare appears to be the most stable; under this strategy roughly half
the sellers have incentive to deviate but they stand to gain only about 10%. Round robin performs a bit worse, but
the simplicity of the algorithm may make it an attractive option in the event that it is not computationally feasible to
maximize utility on large datasets.

5We do not set aside a test set for the main experiment since out-of-sample prediction is not the goal. However, a separate evaluation using
20% data for testing shows a RMSE of 1.1 on a 10 point scale for Rent-the-runway and 0.64 – 0.7 on a 5 point scale on the two Amazon datasets.
These suggest a reasonably accurate recommender system.

6Some caution is warranted in interpreting these gains. We report the average incentive an individual seller has to deviate from the current
matching. This is not necessarily the gains the sellers will realize if all of them deviate to maximize their expected sales. We expect that gains will
be lower under under this setting, since particularly worse off buyers will attract multiple new sellers, thereby leading to increased competition.
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Table 7. Instability in top-5 recommendations under unit exposure constraint.

Number of users/items
50/250 200/1000

Automotive Move - Gain- Welfare+ Envy- Swap Envy- Move- Gain- Welfare+ Envy- Swap Envy-

Greedy top-5 97.08% 114.10% 6.27 76.25% 59.62% 99.12% 141.50% 6.36 71.28% 58.53%
(0.22%) (4.50%) (0.008) (1.82%) (1.14%) (0.07%) (3.03%) (0.006) (0.86%) (0.92%)

Round robin 64.75% 11.50% 6.36 41.75% 0.00% 71.06% 11.69% 6.44 38.31% 0.00%
(1.06%) (0.30%) (0.007) (1.00%) (0.00%) (0.46%) (0.16%) (0.006) (0.72%) (0.00%)

Max. welfare 50.95% 8.59% 6.39 47.38% 0.13% 57.19% 9.06% 6.47 46.91% 0.13%
(1.04%) (0.36%) (0.007) (2.61%) (0.12%) (0.73%) (0.25%) (0.005) (1.43%) (0.08%)

Musical Instr.

Greedy top-5 97.08% 99.12% 6.26 74.75% 58.25% 99.16% 131.50% 6.33 73.03% 59.16%
(0.26%) (5.55%) (0.008) (1.45%) (1.65%) (0.06%) (3.82%) (0.005) (0.75%) (0.98%)

Round robin 64.65% 10.50% 6.34 39.62% 0.00% 69.42% 10.70% 6.40 36.44% 0.00%
(0.88%) (0.23%) (0.007) (1.58%) (0.00%) (0.33%) (0.17%) (0.005) (0.55%) (0.00%)

Max. total utility 49.72% 8.01% 6.37 46.87% 0.50% 55.66% 8.63% 6.43 52.00% 1.13%
(1.12%) (0.28%) (0.007) (3.25%) (0.28%) (0.89%) (0.29%) (0.005) (1.84%) (0.29%)

Rent-the-runway

Greedy top-5 97.57% 147.70% 10.88 89.00% 78.87% 99.17% 174.70% 10.95 88.44% 78.44%
(0.10%) (5.64%) (0.008) (1.30%) (1.43%) (0.03%) (4.10%) (0.005) (0.37%) (0.50%)

Round robin 69.20% 14.21% 11.00 52.88% 0.00% 73.56% 14.43% 11.07 50.50% 0.00%
(0.91%) (0.11%) (0.009) (2.08%) (0.00%) (0.38%) (0.18%) (0.004) (1.18%) (0.00%)

Max. welfare 50.78% 9.76% 11.04 52.50% 0.00% 60.68% 11.61% 11.11 51.75% 0.28%
(1.66%) (0.42%) (0.009) (2.66%) (0.00%) (1.38%) (0.47%) (0.004) (1.88%) (0.09%)

Note: 1) Move: The % of all the sellers who can and would like to move to a different buyer. 2) Gain: The % they would gain in probability of purchase by doing so
(over a baseline average of≈ 0.2). 3) Utility: The welfare of the buyers from their choice sets. 4) Envy: The % of buyers who envy the allocation of another. 5) Swap
Envy: The % of buyers who envy another even after their most preferred swap. Reported numbers are averages over 16 random draws. The numbers in parenthesis are
standard errors. The experiments with 100 users and 500 items produce qualitatively similar results and are omitted due to space constraints. -: smaller the better; +:
larger the better.

Unsurprisingly, maximizing total welfare leads to the highest buyer utility. Round robin is not far behind and
always yields utility within 1% of optimal. Greedy top-k’s myopic decisions are punished by the fact that there are
decreasing marginal utility to adding items to the choice set.

Regarding envy, we see that 70-90% of the buyers have envy under the greedy strategy; moreover, the fraction
of the envious buyers does not reduce significantly even when they are allowed to swap an item with the envied
buyers. Round robin and max welfare do much better, though roughly 50% of buyers still have envy. Notably, the
recommendations of round robin and max welfare are almost always SEF1, meaning whatever envy exists can be
eliminated by exchanging a single pair of items between choice sets. Round robin has lowest envy and swap envy in
the the Amazon datasets, despite the simplicity of the algorithm.

6 Summary

Recommender systems play an important role in matching buyers to sellers in large marketplaces. Given full infor-
mation, do buyers and sellers have an incentive to continue participating in such systems? Or, might some prefer to
pursue alternative matches, which may unravel the market?

We observe that when there is no constraint on the number of times an item can be recommended, top-k recom-
mendations are stable: buyers and sellers do not have an incentive to deviate from the centralized matches. However,
in the presence of constraints on the number of exposures, stable k-recommendations may not exist. We show that
when buyers have identical utility functions, disjoint sets of top-k items, or dichotomous utilities for all items, stable
matches do exist and can be found by selecting choice sets to maximize the total buyer welfare.

In computational experiments on data collected from three markets we find that natural recommender systems
exhibit significant instability. Maximizing the total buyer welfare, which is guaranteed to lead to stable outcomes in
the three restricted settings, also leads to more stable outcomes than greedily recommending each buyer her top-k
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or allocating items to buyers in a round-robin fashion in general. Finally, an analysis of buyers’ envy shows that
greedy top-k strategy generates substantial envy that is not eliminated even after swapping an item with the envied.
Maximizing total buyer welfare and round robin though lead to lower, but still substantial, share of envious buyers.
However, they are almost entirely eliminated upon swapping a single item.

In sum, our results suggest that while stable recommendation need not always exist, maximizing buyers welfare
often achieves a good trade-off between keeping buyers and sellers happy. Characterizing exactly when stability can
be guaranteed, and checking whether real-world datasets satisfy the conditions, remain as important open problems.
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A Proofs Omitted From The Main Body

An instance is called α−balanced if, for all i ∈, ubi ≤ λ · uci for all b, c ∈ B.
An allocation A is called β−impartial when ub(Ab) ≤ β · uc(AC) for all b, c ∈ B.
Consider arbitrary allocation A with blocking pair (b, i) 6∈ A. Let A′ denote an allocation with A′b = Ab∪ i\ j, for

some j ∈ Ab. For example, under unit constraints if i ∈ Ac then A′ can be identical to A except that A′b = Ab ∪ i \ j
and A′c = Ac ∪ j \ i.

Theorem 17. Consider an α-balanced instance with β-impartial allocation A with i ∈ Ac. For any blocking pair

(b, i) of A, the multiplicative gain of buyer b and seller i when deviating from A to A′ (as defined above) can be upper

bound as
P(i, A′)

P(i, A)
≤ αβ, and

ub(A
′
b)

ub(Ab)
≤ αβ.

Proof. We first bound the gain seller i can get from deviating. Observe that ubj ≤ ubi since j is ejected from Ab in
favor of i when deviating. Now

P(i, A′)

P(i, A)
=

ubi
ub(Ab) + ubi − ubj

/ uci
uc(Ac)

=
ubi
uci
· uc(Ac)

ub(Ab) + ubi − ubj

≤ ubi
uci
· uc(Ac)

ub(Ab)

≤ αβ.

We now bound the welfare increase of buyer b. Since (b, i) is a blocking pair the purchase probability of i increases
after deviation, so

P(i, A) < P(i, A′)

⇐⇒ uci
uc(Ac)

<
ubi

b(Ab) + ubi − ubj

⇐⇒ ub(Ab) + ubi − ubj <
ubi · uc(Ac)

uci
. (1)

We can now bound buyer b’s multiplicative increase in welfare as

ub(A
′
b)

ub(Ab)
=
ub(Ab) + ubi − ubj

ub(Ab)

<
1

ub(Ab)
· ubi · uc(Ac)

uci
(by Equation (1))

=
ubi
uci
· ub(Ab)

uc(Ac)

≤ αβ

A.1 Identical Buyers

Theorem 7. For buyers with identical preferences under unit exposure constraints, A∗ is stable, PO and SEF1.
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We rely on the following technical lemma, which is straightforward to verify.

Lemma 8. For all x, y ≥ 0 satisfying x+y = C for a fixed constant C, xy is monotonically increasing in min{x, y}.

Proof of Theorem 7. We first show A∗ is stable. Assume for contradiction it is not, then there exists a blocking pair
(b, i) ∈ B × I. Let b′ be the buyer currently recommended i. By definition, a blocking pair implies i 6∈ A∗b and
∃j ∈ A∗b so that ubj < ubi and p(i, A∗) < p(i, A′), where A′ is constructed from A∗ by exchanging i and j, i.e.
A′b = A∗b + i− j and A′b′ = A∗b′ − i+ j and A∗c = A′c ∀c 6∈ {b, b′}.

First, suppose u(A∗b) ≥ u(A∗b′). It follows from ui > uj that u(A′b) > u(A∗b) ≥ u(A∗b′) > u(A′b′). But this
implies p(i, A∗) < p(i, A′), contradicting that (b, i) is a blocking pair.

We may therefore assume that u(A∗b) < u(A∗b′). Since i increases their purchase probability by participating in
the blocking pair,

ui
u(A∗b′)

<
ui

u(A′b)
=

ui
u(A∗b) + ui − uj

⇔ u(A∗b) + ui − uj < u(A∗b′)

⇔ u(A∗b) + ui < u(A∗b′) + uj . (2)

Finally, we compare min{u(A∗b), u(A∗b′)} and min{u(A′b), u(A′b′)}. By assumption, min{u(A∗b), u(A∗b′)} = u(A∗b).

It holds that min{u(A′b), u(A′b′)} = min{u(A∗b) + ui − uj , u(A∗b′) + uj − ui} > u(A∗b), since ui − uj > 0 and
u(A∗b′)+uj−ui > u(A∗b)+ui−uj = u(A∗b) by (2). It follows from Lemma 8 that u(A′b) ·u(A′b′) > u(A∗b) ·u(A∗b′),
contradicting that A∗ maximizes the product of buyer utilities with respect to the virtual values.

Pareto optimality follows directly from A∗ maximizing the product of buyers’ virtual values.
Finally, we show that A∗ is SEF1 with respect to the virtual values, which implies SEF1 for the true utilities by the

monotonicity of the logarithm. Assume for contradiction that A∗ is not SEF1 for virtual values and suppose that buyer
b ∈ B envies b′ ∈ B. By definition, u(A∗b) < u(A∗b′) and, for every i ∈ A∗b , j ∈ A∗b′ , u(A∗b − i+ j) < u(A∗b′ − j + i).

Suppose for contradiction that ui ≥ uj for all i ∈ A∗b , j ∈ A∗b′ . Since |A∗b | = |A∗b′ |, it follows that u(A∗b) ≥ u(A∗b′),
which is not the case. We conclude that there exists at least one pair of sellers (i, j) such that ui < uj . Let A′ be the
recommendation that results from swapping i and j, in other words, A′b = A∗b +j− i, A′b′ = A∗b−j+ is andA′j = A∗j
for j ∈ B \ {b, b′}.

Buyers have identical preferences and A′b ∪ A′b′ = A∗b ∪ A∗b′ , so u(A′b) + u(A′b′) = u(A∗b) + u(A∗b′). By the fact
that A∗ is not SEF1 and the choice of i and j, we observe

u(A∗b) < u(A′b) = u(A∗b − i+ j) < u(A∗b′ − j + i) = u(A′b′) < u(A∗b′),

however, this contradicts A∗ maximizing the product of buyer virtual values by Lemma 8. We conclude that A∗ is
SEF1.

Theorem 10. Under general exposure constraints, A∗ is PO and SEF1 for buyers with identical preferences.

Proof. Pareto optimility again follows from maximizing expected buyer welfare.
Suppose for contradiction that A∗ is not SEF1. Then there exists buyers b, c, so that b envies c even any feasible

exchange of items betweenA∗b andA∗c . LetX = A∗b∩A∗c denote the items recommended to both b and c. An exchange
of items i ∈ X and j ∈ A∗c can only be feasible if j = i, otherwise c ends up being recommended i twice. Such an
exchange does not change buyer bundles or utility, so we may safely ignore them.

Let S = {(i, j) : i ∈ A∗b \ X, j ∈ A∗c \ X,ui < uj} denote the set of feasible exchanges that are (strictly)
improving for b. Suppose S = ∅. If |X| = k, then b and c are recommended idenitcal choice sets, and there is no
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envy. We may conclude that |X| < k. Since k = |A∗b | = |A∗c |, it follows that |A∗b \ X| = |A∗c \ X| > 0. Let
i− = argmini{ui : i ∈ A∗b \X} and j+ = argmaxj{uj : j ∈ A∗c \X}. If S = ∅, then in particular (i−, j+) 6∈ S
and, since this is a feasible exchange, it follows that ui− > uj+ . Then

u(A∗b) ≥ u(X) + ui− · |A∗b \X| > u(X) + uj+ · |A∗b \X|

= u(X) + uj+ · |A∗c \X| = u(A∗c),

contradicting that b envies c. It follows that S 6= ∅.
Select arbitrary (i, j) ∈ S. By assumption, u(A∗b) + uj − ui < u(A∗c) + ui − uj . Construct A′ by exchanging

i and j and keeping the rest of the recommendation unchanged, so A′b = A∗b ∪ {j} \ {i} and A′c = A∗c ∪ {i} \ {j}
A′d = A∗d for all d ∈ B \ {b, c}. Now

u(A∗b) < u(A′b) = u(A∗b) + uj − ui < u(A∗c) + ui − uj = u(A′c) ≤ u(A∗c).

Since u(A∗b)+u(A∗c) = u(A′b)+u(A′c), we conclude by Lemma 8 that
∏

b∈B u(A∗b) <
∏

b∈B u(A′b), a contradiction.
It follows that A∗ is SEF1.

A.2 Dichotomous Values

Recall that vbi ∈ {a, a′} for all b ∈ B and i ∈ I, for some real-valued a < a′.

Theorem 13. Under general exposure constraints, A∗ is stable and PO for buyers with dichotomous values.

Proof. As before, set ` = ea and h = ea
′
. We show that maximizing the product of buyer virtual values, which is

equivalent to maximizing buyer welfare, is stable (Pareto optimality follows from maximizing buyer welfare).
Assume, for contradition, A∗ is not stable. Then there exists a blocking pair (b, i) ∈ B × I. Let c be the buyer to

whom (the relevant copy of) i is currently recommended.
Since b is willing to participate in the blocking pair, ubi = h and her choice set contains at least one low-valued

item. Let j ∈ A∗b be such an item with ubj = `. Construct A′ from A∗ by transferring i from c to b’s choice sets, and
completing c’s choice set by recommending some item j′ that is below capacity after the transfer. Note that j′ must
exist, by the definition of a blocking pair, and j′ need not be j, in particular, when j ∈ A∗c using j′ = j is infeasible.
Now A′b = A∗b + i− j, A′c = A∗c + j′ − i and A′d = A∗d for all d ∈ B \ {b, c}.

We now consider the possible values of (ubi, ucj′):

1. (`, ·): Now ub(A
′
b) ≤ ub(A

∗
b). This contradicts (b, i) being a blocking pair, since b must strictly gain from

participating in a blocking pair and can not do so if ubi = ` = ubj .

2. (h, h): Now ub(A
′
b) > ub(A

∗
b) since ubi > ubj and uc(A′c) ≥ uc(A

∗
c) since ucj′ = h ≥ uci. This contradicts

that A∗ maximizes the product of virtual values.

3. (h, `): Now ub(A
′
b) = ub(A

∗
b)− `+ h > ub(A

∗
b). We will handle the cases of uci = ` and vci = h seperately.

First, suppose uci = `. Then uc(A′c) = uc(A
∗
c), implying uc(A′c) · ub(A′b) > uc(A

∗
c) · ub(A∗b), contradicting

A∗ maximizing the product of virtual values.

Suppose instead uci = h. Now uc(A
′
c) = uc(A

∗
c) + ` − h ≤ uc(A

∗
c). It follows that uc(A′c) + ub(A

′
b) =

uc(A
∗
c) + `− h+ ub(A

∗
b)− `+ h = uc(A

∗
c) + ub(A

∗
b), so we are in a position to check whether it is possible

to apply Lemma 8. We know that ub(A∗b) < ub(A
∗
b) + h− ` = ub(A

′
b) < uc(A

∗
c), because both b and i benefit
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from participating in the blocing pair and ubi = h = uci by assumption. As a result, uc(A∗c)−ub(A∗b) > h+ `.

In contrast, uc(A∗c) − uc(A′c) = h + `. It follows that ub(A∗b) < uc(A
′
c) and thus min{ub(A∗b), uc(A

∗
c)} <

min{ub(A′b), uc(A′c)}. By Lemma 8, this contradicts A∗ maximizing the product of virtual values.

We conclude there exists no blocking pair (b, i). Hence, A∗ is stable.

A.3 Other Preference Domains

A.3.1 Latent factor models

First, we show that the instance of Theorem 3 (Table 2) can be factorised, which implies that stability can not be
guaranteed when buyer values come from a latent factor model.

Example 18. A stable matching need not exist when values come from a latent factor model. Let n = 2, k = 2, f = 2.

Consider β1 = (0.6, 1.4), β2 = (1.7, 0.3) and σa = (1.1, 1.2), σb = (1.3,−0.5), σc = (0.6, 1.2), σd = (0.7, 1). The

resulting value and utility matrices are shown below.

a b c d

1 2.34 0.08 2.04 1.82
2 2.23 2.06 1.38 1.49

a b c d

1 10.39 1.08 7.69 6.17
2 9.39 7.84 3.97 4.44

Table 8. Valuation matrix (left) and utility matrix (right).

It is straightforward to verify that this instance allows the same blocking pairs identified in Theorem 3.

A.3.2 Identical preference orders

Next, we consider the case where buyers have identical preference orders over the items, but not identical values.
The following example with two buyers, six items, unit exposure constraints and k = 3 shows that stability can

not be guaranteed.

a b c d e f

1 1 4 5 6 7 10
2 0.5 1.7 4.5 5 9 10

Table 9. Buyers’ virtual values: identical preference orders do not guarantee stable recommendations existing.

However, stability can be guaranteed in the restricted case of unit exposure constraints with n = 2 = k, m = 4.

Proposition 19. For two buyers with identical preference orders and four items {a, b, c, d} with = 2 under unit

exposure constraints, at least one of {{a, d}, {b, c}} and {{b, c}, {a, d}} are stable.

A.4 Finding Stable Recommendations, When They Exist

Example 1 shows that stability can not be guaranteed for general preferences. However, there may still be many
instances that permit stable recommendations. We construct an integer program to find a stable match if it exists and,
if not, returns recommendations in which the benefit from participating in a blocking pair is as small as possible.

There are some obstacles to overcome. Stability depends on sellers’ purchase probabilities, which are inherently
nonlinear. One option is to assign choice sets to buyers and precompute all the resulting purchase probabilities,
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however, this leads to an exponentially sized program. We find a formulation with O(|B|2 · |I|2) = O(|B|4 · k2)

variables and as many constraints.
Define binary variable xbs which takes value 1 exactly when s ∈ I is recommended to b ∈ B. The following

constraints ensures k sellers are recommended to each buyer and that the recommendation satisfies capacity constraints∑
b∈B

xbs = cs,∀s ∈ I, (3)∑
s∈I

xbs = k, ∀b ∈ B. (4)

Define continuous variable g ≥ 0 to capture the maximum multiplicative improvement any seller can get from
deviating from any solution x. Consider arbitrary (b, s) ∈ B × I and let c the buyer that s is recommended to and t
seller currently recommended to b who can be displaced by s (i.e. ubs > ubt).
Then

g ≥ ubs∑
k∈I xbkubk − ubt + ubs

/
ucs∑

k∈I xckuck
,

where the numerator is the purchase probability of s after transferring into b’s bundle and the denominator is their
current purchase probability with c. We rewrite this as

g · (
∑
k∈I

xbkubk − ubt + ubs) ≥
ubs
ucs
· (
∑
k∈I

xckuck).

Define continuous variable zbs = g · xbs for all b ∈ B, s ∈ I. To ensure that zbs takes the appropriate values, we
require constraints

zbs ≥ 0, (5)

zbs ≤ xbs ·G, (6)

zbs ≤ g, (7)

zbs ≥ e+ (xbs − 1)G, (8)

for all b ∈ B, s ∈ I and some upper bound G on g. Substituting into the above we obtain∑
k∈I

zbkubk − gubt + gubs ≥
ubs
ucs
·
∑
k∈I

xckuck, (9)

which should hold for all b 6= c ∈ B, s 6= t ∈ I as long as xbt = 1 = xcs and ubs > ubt. To enforce this we create a
new indicator variable

δcsbt =

1, when xbt = 1 = xcs and ubs > ubt, and

0 otherwise.

Now we can rewrite eq. (9) as∑
k∈I

zbkubk − gubt + gubs ≥
ubs
ucs
·
∑
k∈I

xckuck − (1− δcsbt )M. (10)
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The following two constraints ensure that δcsbt takes on the value 1 when expected,

(1− δcsbt )M ′ ≥ ubt − ubs − (xbt + xbs − 2)M, (11)

−δcsbtM ′ ≤ ubt − ubs − (xbt + xbs − 2)M, (12)

for M ′ > 2M. Observe that when xbt = 1 = xcs and ubs > ubt, eq. (11) does not bind and eq. (12) becomes
−δcsbtM ′ < 0, implying δcsbt = 1. When xcs + xct < 2, eq. (11) becomes (1 − δcsbt )M ′ ≥ 0, ensuring δcsbt = 0, while
(12) does not bind. Similarly ubs ≤ ubt, implies δcsbt = 0.

This yields the mixed integer program

min g

s.t. eqs. (3) to (4) (assignment constraints)

eqs. (5) to (8) ∀b ∈ B, s ∈ I (linearization constraints)

eqs. (10) to (12) ∀b 6= c ∈ B, s 6= t ∈ I (stablity constraints)

g ≥ 0, x ∈ {0, 1}|B|×|I|, z ∈ {0, 1}|B|×|I|

δcsbt ∈ {0, 1}|B|×|I|×|B|×|I|

When g ≤ 1, no seller can improve their purchase probability by participating in a blocking pair and the recom-
mendation is stable.

A.4.1 Scalability

We compare the computational cost of the integer program with the three recommendation strategies in Section 4
by training SVD++, a matrix factorization based collaborative filter, on the datasets described in Section 5.1. An
instance is created setting k = 3 and randomly selecting B ∈ {2, 22, . . . , 28} buyers and a corresponding number
of random items and taking the collaborative filter’s estimated buyer-item ratings as values. The time it takes each
approach to yield a recommendation is visually represented in Figure 1. Clearly, the integer program does not scale to
reasonable sizes; we exclude it from further experiments. Maximizing buyer welfare performs well on these tests, but
may eventually present computational challenges. Round robin and greedy top-k is consistently extremely fast for all
problem sizes.

Figure 1. Time to find recommendations as function of the number of buyers with k = 5.
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