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We study trade-offs between fairness and efficiency when allocating indivisible items online. We attempt to

minimize envy, the extent to which any agent prefers another’s allocation to their own, while being Pareto

efficient. We provide matching lower and upper bounds against a sequence of progressively weaker adver-

saries. Against worst-case adversaries we find a sharp trade-off: no allocation algorithm can simultaneously

provide both non-trivial fairness and non-trivial efficiency guarantees. In a slightly weaker adversary regime

where item values are drawn from (potentially correlated) distributions it is possible to achieve the best of

both worlds. We give an algorithm that is Pareto efficient ex post and either envy-free up to one good or

envy-free with high probability. Neither guarantee can be improved, even in isolation. En route, we give a

constructive proof for a structural result of independent interest. Specifically, there always exists a Pareto

efficient fractional allocation that is strongly envy-free with respect to pairs of agents with substantially

different utilities, while allocating identical bundles to agents with identical utilities (up to multiplicative

factors).

1. Introduction

Fairly and efficiently allocating resources to heterogeneous agents is a fundamental problem in

operations research with applications including advertising (Mehta et al. 2007, Bateni et al. 2022,

Balseiro et al. 2021), organ transplantation (Su and Zenios 2006, Bertsimas et al. 2013), nurse shift

* Preliminary versions of this paper were accepted at the 19th and 21st ACM Conference on Economics and Compu-

tation. Results from the first paper, on fair allocations in the worst-case, are included in Section 3. The second paper

appeared as an extended abstract and considered fairness and efficiency against worst-case and Bayesian adversaries.
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scheduling (Miller et al. 1976), and resource allocation in shared facilities like data centers (Butler

and Williams 2002, Armony and Ward 2010, Ghodsi et al. 2011, Vardi et al. 2021).

We study the problem of allocating indivisible goods to agents who have additive valuations.

Our goal is proving strong mathematical guarantees of both the interpersonal fairness and the

efficiency of the resulting allocation. Several fairness notions have been used in the literature, but

arguably the gold standard is envy freeness, which requires that each agent is at least as happy

with their own allocation as the allocation of any other agent. In terms of efficiency, we aim for

Pareto efficient or approximately Pareto efficient allocations which, in isolation, can be achieved

by allocating each item to the agent who values it most.

Ignoring efficiency, envy-free solutions always exist in many well-studied fair division settings

that involve divisible goods or a numéraire, such as cake cutting (Brams and Taylor 1996, Procaccia

2016) and rent division (Su 1999, Gal et al. 2017). For divisible items, one strategy for finding a fair

allocation is the competitive equilibrium from equal incomes (CEEI) solution of Varian (1974). In

the equilibrium allocation, agents use assigned (equal) budgets to purchase their preferred bundles

of goods at virtual prices, and the market clears (all goods are allocated). This solution is envy

free (Foley 1967) and coincides with the solution that maximizes the Nash social welfare (Arrow

and Intriligator 1982), that is, the solution which maximizes the product of agent utilities.

By contrast, with indivisible goods, envy is clearly unavoidable in general — consider a single

item that is desired by two agents. That is why previous papers (Lipton et al. 2004, Caragiannis

et al. 2016) focus on the relaxed notion of envy-freeness up to one good (EF1), in which envy may

exist, but for any bundle that an agent prefers over their own, there exists a single good whose

removal eliminates that envy. With indivisible goods, the approximate-CEEI solution (Budish 2011)

is EF1 but may not allocate all items, while the integral solution which maximizes the Nash social

welfare is both EF1 and Pareto efficient (Caragiannis et al. 2016).

Our point of departure is that we allow items to arrive online. That is, we must choose how to

allocate an item immediately and irrevocably at the moment it arrives, without knowing the values
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of items that will arrive in the future. This setup mirrors common decision-making scenarios in

humanitarian logistics. A paradigmatic example is that of food banks (Aleksandrov et al. 2015, Lee

et al. 2019), which receive food donations and deliver them to nonprofit organizations such as food

pantries and soup kitchens. Indeed, items are often perishable, which is why allocation decisions

must be made quickly, and donated items are typically unsold or leftover products, leading to a

lack of information about items that will arrive in the future.

As noted, the static setting permits a solution which is EF1 and Pareto efficient for any number

of items (Caragiannis et al. 2016), but this requires upfront knowledge of all items. In contrast,

in the online setting, one would expect the maximum envy to increase with the number of items

but may hope to control the rate at which it grows. However, it is entirely unclear what impact

minimizing envy online will have on efficiency. Our primary research question is:

Are there online allocation algorithms that are simultaneously fair and efficient?

1.1. Our Contributions

We study the tradeoff between fairness and efficiency in the following setting: T indivisible items

arrive online (one-by-one) and must be allocated immediately and irrevocably to a set of agents N .

Agent i∈N has value vit for item t, these values are known at time of allocation and are generated

according to one of four different adversary models, which we describe below. For each adversary

model, we fully characterize the extent to which fairness and efficiency are compatible (or not).

In Section 3, we consider the strongest, worst-case adversaries. We start, in Section 3.1 and Sec-

tion 3.2, by determining the limits of what is possible when solely minimizing envy with randomized

allocation algorithms against an adaptive adversary that chooses the agent values for an arriving

item after seeing the (realized) allocations of all the previous items. A natural idea is to allocate

each item to an agent chosen uniformly at random. We find that this random allocation has van-

ishing envy : envy that grows sublinearly in the number of items (Theorem 1). Surprisingly, given

the simplicity of the algorithm, we also construct a matching lower bound: Theorem 2 establishes
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that the rate at which random allocation causes envy to vanish is asymptotically optimal (up to

logarithmic factors). Unfortunately, random allocation only provides trivial efficiency guarantees.

Despite random allocation being asymptotically optimal in terms of fairness, there may exist

other algorithms with vanishing envy that perform much better in terms of efficiency. We show

that this is not the case. In Section 3.3, we study a weaker, non-adaptive worst-case adversary

that selects an instance (with T items) after observing the algorithm, but before it is executed, so

without knowledge of any random outcomes in the algorithm. Our main negative result (Theorem 3)

is that, even against this weaker adversary, no algorithm with vanishing envy can have stronger

efficiency guarantees than random allocation, implying the same result for adaptive adversaries.

An important implication of Theorem 3 is that in settings where agents’ value distributions are not

known, or where there is a strong need for worst-case guarantees, algorithm designers are forced to

choose between achieving either non-trivial efficiency guarantees or non-trivial fairness properties.

In Section 4, we study weaker, Bayesian adversaries. Section 4.1 considers the weakest of these,

who selects a distribution D from which each value is drawn (independently and identically across

items and agents). Here a good algorithm was identified by Dickerson et al. (2014) and later

simplified and improved by Kurokawa et al. (2016), albeit in a different context: allocate each item

to the agent who values it most. We find this core idea, with very minor modification, is ex post

Pareto efficient and either envy-free with high probability or EF1 (Theorem 4).

When agents are non-identical, the strategy of allocating each item to the agent with the highest

value fails, as do variants like considering the highest quantile instead of the highest value. Despite

this, we design an algorithm that provides ex post Pareto efficiency and vanishing envy. Our main

positive results are established against an even stronger adversary that allows for correlated agents,

that is, vit can be correlated with vît but not with vit̂. Of course, all results established for correlated

agents extend to the settings with independent agents.

In Section 4.2, we analyze our high-level strategy, while postponing some crucial technical obsta-

cles. We generate an offline instance with n agents and as many items as the support of the corre-

lated discrete distribution D. We show in Theorem 5 that it is possible to use a (fractional) Pareto
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efficient solution to this offline instance to guide the (integral) online allocation. This rounding can

be coupled with any Pareto efficient and envy-free offline solution, for example the fractional allo-

cation that maximizes the product of agents’ utilities, to yield an ex post Pareto efficient algorithm

with vanishing envy.

Notably, if the solution to the offline instance is a strongly envy-free allocation, where each agent

strictly prefers their own allocation over any other, the same approach would imply online envy-

freeness with high probability (a much stronger guarantee than simply vanishing envy). This goal

is too optimistic. However, we show in Section 4.3 that it is possible to provide an offline allocation

with a slightly weaker property, which, when used online, results in either envy-freeness with high

probability or EF1 ex post (Theorem 8). Remarkably, this is the same guarantee as against the

weak Bayesian adversary.

Theorem 8 relies on a structural, constructive result about fractional allocations to the offline

problem (Theorem 7). We give an algorithm that starts with a solution to the Eisenberg-Gale

convex program (Eisenberg and Gale 1959) with equal budgets and iteratively adjusts the budgets

until it arrives at a Pareto efficient fractional allocation where agent i either strictly prefers their

allocation to the allocation of agent j, or, if they are indifferent, then i and j have identical

fractional allocations and the same value (up to multiplicative factors) for all items allocated to

them. We believe this result and approach may be of independent interest.

We conclude with a remark on the fairness criteria of our main positive result: “EF1 or envy-

free with high probability”. Even in isolation under the weakest adversary, this is the strongest

achievable fairness guarantee. It is impossible to always output an EF1 allocation (ex post), and it is

impossible to always output an allocation that is envy free with high probability (see Section EC.2).

1.2. Related Work

Our paper is related to the growing literature on online or dynamic fair division (He et al. (2019),

Kash et al. (2014), Friedman et al. (2015, 2017), Li et al. (2018), Freeman et al. (2018), Aleksandrov

et al. (2015), Walsh (2011), Bogomolnaia et al. (2021), Gkatzelis et al. (2021)). In settings similar
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to our worst-case adversary, He et al. (2019) allow items to be reallocated at a later time, and

study the number of adjustments that are necessary and sufficient in order to maintain an EF1

allocation online. Bansal et al. (2020) propose an algorithm that guarantees envy of O(logT ) with

high probability for the case of two independent identical agents but do not consider efficiency. In

contrast to our positive result in Section 4.3, their result allows the distribution to depend on T .

Dickerson et al. (2014) study a completely different setting and show that allocating an item to

the agent who values it most results in an envy-free allocation with probability 1 as the number of

items goes to infinity (a similar result appears in Kurokawa et al. (2016)). It is straightforward to

apply this against the weakest adversary we consider, where agents are identical and items values

are independent and identically distributed. We discuss their result in greater detail in Section 4.

For the offline problem, i.e., when all agents’ values are available to the algorithm, Caragiannis

et al. (2016) show that in fact there is no tradeoff between fairness and efficiency: the (integral)

allocation that maximizes the Nash social welfare is simultaneously Pareto efficient and EF1.

Computing the fractional allocation that maximizes Nash social welfare is a special case of the

Fisher market equilibrium with affine utility buyers; the latter problem was solved in (weakly)

polynomial time by Devanur et al. (2008) and improved to a strongly polynomial time algorithm

by Orlin (2010). Our structural result starts from an exact solution to the Eisenberg-Gale convex

program (Eisenberg and Gale 1959) and then uses a polynomial number of operations. Therefore,

all our algorithms run in strongly polynomial time; we further comment on this in Section 5.

Beyond envy, the price of fairness measures the relative loss in social welfare that result from

enforcing a fairness constraint. The price of fairness has been studied in static settings for divisible

(Caragiannis et al. 2009, Bertsimas et al. 2011, 2012) and more recently indivisible items (Barman

et al. 2020, Bei et al. 2021, Narayan et al. 2021). This is similar in spirit to our work; we approximate

Pareto efficiency rather than welfare and are willing to relax the fairness notion rather than strictly

enforcing it.
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2. Preliminaries

We study the problem of allocating a set of T indivisible items (also referred to as goods) arriving

over time, labeled by G = [T ] = {1,2, · · · , T}, to a set of n agents, labeled N = [n]. Agent i ∈ N

assigns a (normalized) value vit ∈ [0,1] to each item t∈ G. Agents have additive utilities for subsets

of items, where vi(S) =
∑

t∈S vit for S ⊆G. An allocation A is a partition of the items into bundles

A1, . . . ,An, where Ai is assigned to agent i∈N .

Items arrive one by one, in order, over a total of T rounds and are immediately allocated. Let

Gt = [t] be the set of items that have arrived up until time t. Allocations of Gt are denoted At.

Agents’ valuations for the t-th item only become available once the item arrives, and we would

like to allocate the goods so that the final allocation A = AT is fair and efficient. Many of our

results characterize fairness and efficiency as T grows. We use standard asymptotic notation; see

Appendix EC.1 for a reminder.

We now discuss the different adversary models which govern how the item values are generated

before formally defining our notions of fairness and efficiency.

2.1. Adversary Models

One may think of each scenario as a game between the adversary and the allocation algorithm. For

the first two, it will be convenient to think of the algorithm being fixed before the adversary picks

a strategy. For the last two adversaries, it will be more intuitive to think of the adversary picking

a strategy (distribution) first.

We list our adversaries from strongest to weakest, where a stronger adversary can simulate the

strategy of a weaker adversary but not vice versa. Distributions are assumed to be discrete with

finite support and independent of T , so it cannot have support of size T , variance 1/T , etc. We

refer to adversaries (1)–(2) as worst-case, and (3)–(4) as Bayesian.

1. Adaptive Adversary. The adversary selects values {vit}i∈N after observing the algorithm’s

allocations for the first t− 1 items.
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2. Non-adaptive adversary. The adversary selects an instance (with n agents and T items)

after seeing the algorithm’s description, but without knowing the outcome of any randomness

in the algorithm. Our main negative result is for this setting.

3. Correlated agents and i.i.d. items. The adversary specifies a joint distribution for agent

values D1, . . . ,Dn. In round t, the value of item t to each agent i is drawn from their distri-

bution, that is vit ∼Di. Value vit can be correlated with vjt, but not with vit̂. For simplicity,

we treat this setting as follows. Each item t has one of m types. Agent i has value vi(γj) for

an item of type γj; the type of each item is drawn i.i.d. from a distribution D with support

GD, |GD|=m. We write fD(γj) for the probability that the t-th item has type γj. Our main

positive result is for this setting.

4. Identical agents and i.i.d. items. The adversary selects a distribution D. In round t, the

value of item t to each agent i is drawn independently from this distribution, i.e. vit ∼D.

Against Bayesian adversaries we study the allocation algorithm’s performance as T →∞. Worst-

case adversaries always have the option to let all future items be worthless to every agent, so here

T is assumed to be fixed and known when the adversary selects their strategy.

2.2. Measuring Fairness

We focus on a well-studied notion of fairness called envy. An allocation A= (A1, . . . ,An) is envy-

free when vi(Ai)≥ vi(Aj) for all i, j ∈N . The pairwise envy of agent i towards j is Envyi,j(A) =

max{vi(Aj)− vi(Ai),0}, while Envy(A) = maxi,j∈N Envyi,j(A) is the maximum envy. Envy(A) = 0

implies the allocation is envy free. An allocation A is envy-free up to one good (EF1) when, for all

pairs of agents i, j, Envyi,j(A)≤maxt∈Aj
vit. Note that this is a stronger guarantee than Envy(A)≤ 1

when maxt∈G vit < 1. For convenience, we will occasionally refer to Envy(Ak) as Envyk for k ∈ G, and

EnvyT = Envy(AT ) = Envy(A). An algorithm has vanishing envy if the expected maximum pairwise

envy is sublinear in T , that is, E[Envy(A)]∈ o(T ) or limT→∞E[Envy(A)]/T → 0.
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2.3. Measuring Efficiency

The utility profile of an allocation A is a vector u = (u1, . . . , un) where ui = vi(Ai). A utility

vector u dominates another utility vector u′, denoted by u � u′, if ui ≥ u′i for all i and there is

some j for which uj > u′j. An allocation with utility profile u is Pareto efficient if there is no

allocation with utility vector u′ such that u′ � u. Where appropriate, we use a notion of approximate

Pareto efficiency, initially defined by Ruhe and Fruhwirth (1990), to measure the efficiency of our

algorithms. An allocation with utility profile u is α-Pareto efficient when u/α is undominated.

Since our setting is online, we need to specify whether efficiency guarantees are worst-case or

average-case with respect to the adversary instance and the randomness of our algorithms. For a

worst-case guarantee, we say that an allocation is α-Pareto efficient ex post if it always outputs

an α-Pareto efficient allocation, that is, for all agent valuations are and all possible outcomes of

any randomness in the algorithm. On the other hand, an allocation algorithm is α-Pareto efficient

ex ante if the expected utility profile is α-Pareto efficient (where the expectation is with respect

to the randomness in the instance and the algorithm). Our main positive result guarantees 1-

Pareto efficiency ex post, while our main negative result shows that a specific notion of fairness is

incompatible with 1/n-Pareto efficiency ex ante.

3. Fairness and Efficiency are Incompatible Against Worst-case Adversaries

In this section we discuss the trade-off between efficiency and fairness against the stronger, non-

Bayesian adversaries.

To build intuition, we consider a couple of obvious strategies for finding fair or efficient allocation

algorithms and highlight how they fail. First, we observe that the natural Pareto efficient algorithm

that allocates each item to the agent who values it most has EnvyT ∈Ω(T ).

Example 1. Consider two agents. Let v1t = 1 for all t ∈ G, and v2t = 1/2 for all t ∈ G. When

allocating each item to the agent who likes it most, A1 = G and A2 = ∅. This allocation is Pareto

efficient, but has EnvyT = T/2.
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Table 1 Blindly allocating to the agent with the highest envy leads to

constant per-round envy.

t 1 2 3 4 5 · · ·

Value of agent 1 1/2 1 ε 1 ε · · ·
Value of agent 2 1/2 ε 1 ε 1 · · ·

Envy of agent 1 −1/2 1/2 1/2− ε 3/2− ε 3/2− 2ε · · ·
Envy of agent 2 1/2 1/2− ε 3/2− ε 3/2− 2ε 5/2− 2ε · · ·

The prior allocation algorithm ignored envy entirely, so it is no surprise that it had linear envy.

Our next example analyzes a greedy policy that allocates each item to the agent with the greatest

envy and finds it, too, fails to achieve vanishing envy.

Example 2. Consider the algorithm that at step t allocates the item to the agent with the max-

imum envy, if she has positive value for the item, and otherwise, say, allocates to the agent with

the highest value for the item. We claim this algorithm can lead to EnvyT ∈Ω(T ).

We construct an example where each agent envies the other after the second item is allocated.

For t≥ 2, whenever agent i has maximum envy, we present an item with value ε for her, and value

1 for the other agent. Table 1 summarizes the analysis.

For t≥ 2, the envy of each agent increases by 1 every two steps. Therefore, the maximum envy

at step 2t is approximately t, and EnvyT/T approaches 1/2 as T goes to infinity.

These examples suggest it is non-trivial to come up with an allocation algorithm that achieves

vanishing envy. Couple vanishing envy with Pareto efficiency, and the task appears quite daunting.

We first investigate what is possible when focusing solely on fairness. We find that vanishing

envy is achievable; in fact, uniform random allocation has E[EnvyT ] ∈ Õ(
√
T/n) against adaptive

adversaries, while trivially being 1
n

-Pareto efficient ex ante. Now the question becomes: is this

optimal, or are there other strategies with even stronger fairness properties? We provide an adaptive

adversary strategy which guarantees EnvyT ∈ Ω((T/n)r/2) for any r < 1, thereby showing that

random allocation is optimal (up to logarithmic factors) in terms of envy.

Finally, we turn our attention to simultaneously providing fairness and and efficiency guarantees.

We find that, even against a non-adaptive adversary, no algorithm can achieve vanishing envy
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while being ( 1
n

+ ε)-Pareto efficient for any ε > 0. This clearly establishes the boundaries of what

is possible against worst-case adversaries: any allocation algorithm must choose between achieving

either non-trivial fairness guarantees or non-trivial efficiency.

3.1. Random Allocation has Vanishing Envy and is 1/n-Pareto Efficient

A natural randomized algorithm is to allocate each item (independently) to an agent selected

uniformly at random; we refer to this as the random allocation algorithm. The following observation

is a direct result of the fact that each agent receives each item with probability 1/n under random

allocation and therefore has expected utility 1/n times their utility for all items.

Proposition 1. The random allocation algorithm is 1/n-Pareto efficient ex ante.

Next, we analyze the fairness of the random allocation algorithm by first characterizing the

adversary’s optimal strategy. We prove that for an adaptive adversary who maximizes E [EnvyT ],

where the expectation is with respect to the randomness of the algorithm, the optimal strategy is

integral, that is, all values are in {0,1}. In fact, the optimal integral strategy sets assigns vit = 1

for all i ∈ [n], t ∈ [T ]. This optimal adversary strategy is non-adaptive and therefore, since all the

randomness is coming from the algorithm, the random variables for the envy between agents i and

j at times t and t′ are independent. Standard concentration inequalities for the envy between any

pair of agents, combined with a union bound over all such pairs, gives an upper bound on the

expected envy.

Theorem 1. Suppose that T ≥ n logT , where log is the natural logarithm. Then the random allo-

cation algorithm guarantees that E [EnvyT ]∈O(
√
T logT/n).

The assumption of T ≥ n logT is innocuous, as otherwise we can give each agent at most logT

items to achieve EnvyT ≤ logT .

Proof of Theorem 1. A typical extensive-form game tree would have nodes associated with

the algorithm or the adversary, and arcs corresponding to actions (the allocation of the current

item in the case of the algorithm, choosing a value vector in the case of the adversary). However,
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because we consider a fixed algorithm, it is convenient to imagine an unusual, adversary-oriented

game tree.

Consider a game tree with nodes on T + 1 levels. Every node on level 1, . . . , T has n outgoing

arcs labeled 1, . . . , n. The leaf nodes on level T + 1 are labeled by the maximum envy for the

corresponding path, which defines an allocation of the T items.

A fully adaptive strategy s for the adversary is defined by labeling every internal node u with

a value vector s(u), where s(u)i is the value of agent i for the item corresponding to node u. The

adversary’s strategy is allowed to depend on the allocations and valuations so far, i.e., the path from

the root to u. The objective of the adversary is to choose a strategy s that maximizes the expected

envy. The algorithm selects an outgoing edge at every node u, corresponding to an allocation of the

item with valuation s(u). Consider the algorithm that allocates every item uniformly at random

or, equivalently, picks a random outgoing edge at each node u.

The following two lemmas are inspired by the work of Sanders (1996) on load balancing and

show that the adversary labels every internal node of this tree with the vector 1n. All omitted

proofs appear in the electronic companion.

Lemma 1. For every allocation algorithm, the adversary has an optimal adaptive strategy that

labels every internal node of the game tree with a vector in {0,1}n.

This holds for any allocation algorithm, since for every agent’s valuation of any item it is possible to

compute whether that item increases or decreases the maximum envy in expectation. If it increases

(resp. decreases) the maximum envy, the adversary benefits by increasing (resp. decreasing) the

corresponding valuation to 1 (resp. to 0).

The following lemma leverages specific properties of the random allocation algorithm.

Lemma 2. Against uniformly random allocations, the adversary has an optimal adaptive strategy

that labels every internal node of the game tree with the vector 1n.

The fact that the adversary is adaptive naturally introduces a dependence in the change in any

pairwise envy from one arrival to the next. Lemma 2 allows us to circumvent this dependence as
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though we are dealing with a non-adaptive adversary and express any pairwise envy as the sum of

independent random variables.

Specifically, given this adversary strategy, define independent random variables

X ij
t =


−1, with probability 1/n,

0, with probability 1− 2/n,

1, with probability 1/n

for all t ∈ [T ], i, j ∈ [n]. Clearly, EnvyijT = maxi,j∈[n]{
∑T

t=1X
ij
t ,0}. For each X ij

t , E[X ij
t ] = 0,

E[(X ij
t )2] = 2/n and |X ij

t | ≤ 1. We bound the probability of having large envy between any pair

of agents i and j by applying Bernstein’s inequality ((Bernstein 1946), see EC.3) to EnvyijT , which

equals
∑T

t=1X
ij
t when envy exists. It follows that, for λ> 0,

Pr
[
EnvyijT ≥ λ

]
= Pr

[
T∑
t=1

X ij
t ≥ λ

]
≤ exp

(
−

1
2
λ2

2T
n

+ 1
3
λ

)
= exp

(
− 3nλ2

12T + 2λn

)
.

Let λ= 10
√
T logT/n. Taking a union bound over pairs of agents gives

Pr [EnvyT ≥ λ] = Pr
[
∃i, j ∈ [n] such that EnvyijT ≥ λ

]
≤ n2 exp

(
− 300T logT

12T + 20
√
nT logT

)
≤ 1

T
,

where the last inequality uses the assumption that T ≥ n logT . Since the maximum possible envy

is T , the desired bound on expected envy directly follows, completing the proof of Theorem 1. �

The existence of a randomized algorithm with EnvyT ∈ O(
√
T logT/n) implies the existence

of deterministic algorithms with the same guarantee. One such algorithm can be found through

standard derandomization techniques (Alon and Spencer 2000). This deterministic algorithm can

be interpreted as placing an exponential penalty on each pairwise envy and greedily allocating each

item to minimize the sum of penalties at the end of each round (Benadè et al. 2018).

3.2. Random Allocation Optimizes Fairness Against Adaptive Adversaries

In this section, we show that an adversary can guarantee EnvyT ∈ Ω((T/n)r/2) for any r < 1. As

r→ 1, it follows that the random allocation algorithm in Section 3.1 is optimal (up to a logarithmic

factor).
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Theorem 2. For any n≥ 2 and r < 1, there exists an adversary strategy for setting item values

such that any algorithm must have EnvyT ∈Ω((T/n)r/2).

We first prove the bound for n= 2, followed by the case of an arbitrary number of agents.

Lemma 3. For n= 2 and any r < 1, there exists an adversary strategy for setting item values such

that any algorithm must have EnvyT ∈Ω(T r/2).

Proof. Label the agents L and R, and let {v0 = 1, v1, v2, . . .} be a decreasing sequence of values

(specified later) satisfying vd − vd+1 < vd′ − vd′+1 for all d′ < d. The adversary keeps track of the

state of the game, and the current state defines its strategy for choosing the agents’ valuations for

the next item. The lower bound follows from the adversary strategy illustrated in Figure 1. Start in

state 0, which we will also refer to as L0 and R0, where the adversary sets the value of the arriving

item as (1,1). To the left of state 0 are states labeled L1,L2, . . .; when in state Ld, the next item

that arrives has value (1, vd). To the right of state 0 are states labeled R1,R2, . . .; when in state

Rd the next item arrives with value (vd,1). Whenever the algorithm allocates an item to agent L

(resp. R), which we will refer to as making an L (resp. R) step, the adversary moves one state to

the left (resp. right).

We construct the optimal allocation algorithm against this adversary, and show that for this

algorithm the envy at some time step t ∈ [T ] will be at least Ω(T r/2) for the given r < 1. This

immediately implies Lemma 3: if the envy is sufficiently large at any time step t the adversary can

guarantee the same envy at time T by making all future items valued at zero by both agents.

Figure 1 Adversary strategy for two-agent lower bound. In state Ld, an item valued (1, vd) arrives, while in state

Rd, an item valued (vd,1) arrives. The arrows indicate whether agent L or agent R is given the item in

each state. The arrows are labeled by the amount envy changes after that item is allocated.

(1,1)

0

(v1,1)

R1

(v2,1)

R2

· · ·(1, v1)

L1

(1, v2)

L2

· · ·

(1,−v3) (1,−v2) (1,−v1) (1,−1) (v1,−1) (v2,−1)

(−v3,1)(−v2,1)(−v1,1)(−1,1)(−1, v1)(−1, v2)
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The intuition for the adversary strategy we have defined is that it forces the algorithm to avoid

entering state Ld or Rd for high d, as otherwise the envy of some agent will grow to v0 +v1 + · · ·+vd,

which will be large by our choice of {vd}. At the same time, if an L step is taken at state Ld,

followed by a later return to state Ld, the envy of R increases by at least vd−vd+1; we choose {vd}

so that this increase in envy is large enough to ensure that any algorithm which spends too many

time steps close to state 0 incurs large envy.

By the pigeonhole principle, either the states to the left or to the right of state 0 are visited for

at least half the time. Assume, without loss of generality, that our optimal algorithm spends time

T ′ = dT/2e in the ‘left’ states (L0,L1, . . .), and that T ′ is even. We prove that the envy of agent R

grows large at some time step t. We ignore any time the algorithm spends in the states Rd, d≥ 1.

To see why this is without loss of generality, consider first a cycle spent in the right states that

starts at R0 with an item allocated to R and eventually returns to R0. In such a cycle, an equal

number of items are allocated to both agents. All of these items have value 1 to agent R, yielding

a net effect of 0 on agent R’s envy. (We ignore agent L completely, as our analysis is of the envy

of agent R.) The other case is when the algorithm starts at R0 but does not return to R0. This

scenario can only occur once, which means that the algorithm has already taken T ′ steps on the

left side; the allocation of these items does not affect our proof.

Let 0 ≤K ≤ T ′/2 be an integer and denote by OPT(K) the set of envy-minimizing allocation

algorithms that spend the T ′ steps in states L0, . . . ,LK (and reach LK). Note that the algorithm

aims to minimize the maximum envy at any point in its execution. Let A∗(K) be the following

algorithm, starting at L0: Allocate the first K items to agent L, thus arriving at state LK . Alternate

between allocating to agents R and L for the next T ′ − 2K items, thereby alternating between

states LK−1 and LK . Allocate the remaining K items to agent R. Our first result is that A∗(K)

belongs to OPT(K).

Lemma 4. A∗(K)∈OPT(K).

We analyze the envy of A∗(K) as a function of K before optimizing K. Agent R’s maximum

envy is realized at step T ′ −K, right before the sequence of R moves. EnvyT ′−K has two terms:
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the envy accumulated to reach state LK , and the envy from alternating R and L moves between

states LK and LK−1, so

EnvyT ′−K =
K−1∑
d=0

vd +
T ′− 2K

2
· (vK−1− vK) . (1)

Given r < 1, define vd = (d+ 1)r−dr. Notice that
∑K−1

d=0 vd =Kr. When K ≥
√
T ′/2 it follows that∑K−1

d=0 vd ≥ (T ′/2)r/2 ∈Ω(T r/2), which is what we set out to prove. We limit the rest of the analysis

to the case where K ≤
√
T ′/2.

Lemma 5. Let K ≤
√
T ′/2 and define vd = (d+1)r−dr for r < 1. Then vK−1−vK ≥ r(1−r)Kr−2.

Applying Lemma 5 to (1) and distributing terms yields

EnvyT ′−K ≥Kr− r(1− r)Kr−1 +
T ′

2
r(1− r)Kr−2 ≥ 1

2

(
Kr +T ′r(1− r)Kr−2

)
, (2)

where the second inequality uses the fact that r(1− r)≤ 1/4< 1/2 and assumes K > 1 (otherwise

the envy would be linear in T ′). To optimize K, noting that the second derivative of the above

bound is positive for K ≤
√
T ′/2, we find the critical point:

∂

∂K

(
Kr +T ′r(1− r)Kr−2

)
= rKr−1−T ′r(1− r)(2− r)Kr−3 = 0 =⇒ K =

√
T ′(1− r)(2− r).

Defining C1 =
√

(1− r)(2− r) and substitute into (2) to obtain

EnvyT ′−K ≥
1

2

(
Cr

1(T ′)r/2 +T ′r(1− r)Cr−2
1 (T ′)r/2−1

)
∈Ω(T r/2). �

The extension to n agents follows from the same strategy for agents L, R and letting all other

agents value every item at zero. Allocating to an agent i∈N \{L,R} does not advance the state.

3.3. Non-Trivial Fairness and Efficiency are Incompatible

Recall that random allocation was 1
n

-Pareto efficient. We conclude this section by showing that

no algorithm with vanishing envy can improve on this efficiency guarantee against a non-adaptive

worst-case adversary, which immediately establishes the result against adaptive adversaries.
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Theorem 3. Against a non-adaptive adversary, no (randomized or deterministic) allocation algo-

rithm can achieve both EnvyT ∈ o(T ) and be ( 1
n

+ ε)-Pareto efficient ex ante, for any ε > 0.

To build up some intuition, we start by considering the case of an adaptive adversary where the

algorithm must achieve vanishing envy and ( 1
n

+ ε)-Pareto efficiency ex post. Recall that random-

ization does not help against an adaptive adversary, so we focus on deterministic algorithms.

Lemma 6. No deterministic allocation algorithm can achieve both EnvyT ∈ o(T ) and be ( 1
n

+ ε)-

Pareto efficient ex post, for any ε > 0, against an adaptive adversary.

Proof. Consider any vanishing envy algorithm that for any given T produces an allocation AT ,

where Envy(AT )≤ f(T ) for some f(T )∈ o(T ), and assume, for the sake of contradiction, that this

algorithm achieves ( 1
n

+ ε)-Pareto efficiency for some ε > 0.

We construct an instance denoted I, parameterized by ε and T , which will lead to a contradiction.

For each agent i∈N , vij = 1 for j ∈ [T
n

(i− 1) + 1, . . . , T
n
i] and all other items j′ have value vij′ = ε.

Notice that agent i cares chiefly about the i-th segment of T/n items.

Note that for all intermediate allocations at time t≤ T , we must still have Envy(At)≤ f(T ) since

an adaptive adversary could always make the remaining items valueless to all agents. The first step

is to show via induction that for all “segments” of items [T
n

(i− 1) + 1, . . . , T
n
i], every agent must

receive a number of items in [ T
n2
−xi, Tn2 +xi], where xi = f(T )

ε

(
1 + 2

ε

)i−1
.

As base case for the inductive argument, consider the first segment (i.e. i= 1). Suppose that

some agent k receives T
n2

+ y items where y > 0. Another agent k̂ must then receive fewer than T
n2

items. Then, the envy of k̂ for k at the end of the first segment, Envyk̂,k(A
T/n) is at least ε ·y. But,

Envyk̂,k(A
T/n)≤ f(T ), which implies that y≤ f(T )

ε
; the lower bound on y is identical.

For the inductive step, again suppose that in the segment [T
n

(i− 1) + 1, . . . , T
n
i] some agent k

receives T
n2

+ y items, where y > 0, and let k̂ be the agent who received fewer than T
n2

items. At

the start of segment i,

vk̂

(
A

T
n (i−1)

k

)
− vk̂

(
A

T
n (i−1)

k̂

)
≥−

∑
i′<i

2xi′ ,
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which occurs when k̂ received T
n2

+xi′ items from each segment, k got T
n2
−xi′ , and k̂ had value 1

for all items up until T
n

(i− 1). Therefore, after the i-th segment,

f(T )≥ Envyk̂,k(A
T
n i)≥ ε · y+ vk̂

(
A

T
n (i−1)

k

)
− vk̂

(
A

T
n (i−1)

k̂

)
≥ ε · y− 2

∑
i′<i

xi′ ,

which implies that

y≤ 1

ε

(
f(T ) + 2

∑
i′<i

xi′

)
=

1

ε

(
f(T ) + 2

∑
i′<i

f(T )

ε

(
1 +

2

ε

)i′−1
)

=
f(T )

ε

(
1 +

2

ε

i−2∑
p=0

(
1 +

2

ε

)p)
=
f(T )

ε

(
1 +

2

ε

)i−1

,

where the final transition results from summing the geometric series. The bound on y is identical

when we consider the case that y < 0.

Next, we show that the allocation AT cannot be ( 1
n

+ ε)-Pareto efficient. First, note that the

social welfare maximizing allocation achieves utility (T
n
, . . . , T

n
) by giving all the items of the i-th

segment to agent i. Meanwhile, since xi <xn, we have that in AT each agent gets utility ui at most

(1 + (n− 1)ε)( T
n2

+xn). Therefore,

ui
1/n+ ε

< (1 + (n− 1)ε)

(
T

n2
+xn

)(
1

1
n

+ ε

)
= (1 + (n− 1)ε)

(
T

n2
+
f(T )

ε

(
1 +

2

ε

)n−1
)

n

1 + εn

=
1 + (n− 1)ε

1 + εn
·

(
T

n
+n · f(T )

ε

(
1 +

2

ε

)n−1
)

=
T

n
·
(

1− ε

1 + εn

)
·

(
1 +

f(T )

T
· n

2

ε

(
1 +

2

ε

)n−1
)
.

For large enough T , in particular when f(T )

T
< ε

1+(n−1)ε
· ε
n2(1+2/ε)n−1 , this implies ui <

T
n
· (1/n+ ε)

for each agent i. We conclude AT is not ( 1
n

+ ε)-Pareto efficient, a contradiction. �

We use this result to prove Theorem 3 for a non-adaptive adversary.

Proof of Theorem 3. Suppose that there is an allocation algorithm which guarantees that for

any T , no matter the instance the adversary selects, E[Envy(AT )] ≤ f(T ) for some f(T ) ∈ o(T ),

where the expectation is over the randomness used by the algorithm. We will describe a family of

n instances. After the arrival of the first T
n
i items, it will be impossible for the allocation algorithm
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to distinguish between n− i+ 1 of these instances. For i ∈ {1, . . . , n}, instance Ii’s first T
n
i items

follow I, the instance of the adaptive adversary described above, and the remaining items have no

value. Let g(T ) be a function such that g(T ) · f(T )∈ o(T ) and g(T )∈ ω(1). For example, one may

think of g(T ) = T δ, for some small δ > 0 that depends on f(T ).

Again, we bound the number of items the algorithm can allocate to each agent in each segment;

this time our bounds will be looser and probabilistic. Consider the behavior of the algorithm when

faced with instance I1. At the end of the first segment, i.e. for items 1 through T
n

, if the algorithm

allocates to some agent k at least T
n2

+ x1, for x1 > 0, with probability at least 1
g(T )

, then the

expected envy of some agent k̂ (the one who received fewer than T
n2

items) is at least ε · x1, that

is E[Envy(AT )]≥ 1
g(T )
· εx1. Since E[Envy(AT )]≤ f(T ), we have that x1 ≤ g(T )f(T )

ε
. In other words,

with probability 1− 1
g(T )

, every agent receives a number of items within [ T
n2
−x1,

T
n2

+x1]. Because

the first T
n

items are identical for all instances, the bounds on the number of items received from

the segment also hold for instances I2, . . . , In.

Similarly, we consider the behavior of the algorithm faced with I2 and inspect the end of segment

2. Suppose that, conditioned on the algorithm having allocated each agent a number of items in

[ T
n2
− x1,

T
n2

+ x1] from the first segment, some agent k receives at least T
n2

+ x2 items from the

second segment with probability at least 1
g(T )−1

. This translates to an (unconditional) probability

of at least (1− 1
g(T )

) · 1
g(T )−1

= 1
g(T )

and, for similar reasons as before, it follows that

x2 ≤
g(T )f(T )

ε
+

2x1

ε
≤ g(T )f(T )

ε

(
1 +

2

ε

)
.

Together, after segment 2 we know that with probability 1− 2
g(T )

, every agent receives a number

of items within [ T
n2
− xi, Tn2 + xi] in each segment i ∈ {1,2}. We continue this analysis for larger i

with xi = g(T )f(T )

ε

(
1 + 2

ε

)i−1
.

Finally, we analyze efficiency of the algorithm on instance In. Each agent receives expected utility

at most (1 + (n− 1)ε))( T
n2

+ xn) + n
g(T )

T , where the additional n
g(T )

T term accounts for the worst

case allocation assuming large deviations. Now

ui
1/n+ ε

<
T

n
· 1 + (n− 1)ε

1 + εn
·

(
1 +

n2

ε

f(T )g(T )

T

(
1 +

2

ε

)n−1

+n3g(T )

)
.
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For large enough T satisfying g(T )f(T )

T
< 1

2
ε

1+(n−1)ε
· ε
n2(1+2/ε)n−1 and g(T ) < ε

2n3
, the expected

utility for every agent i is upper bounded by T
n
· ( 1
n

+ ε). On the other hand, the single allocation

that gives items [T
n

(i− 1) + 1, . . . , T
n
i] to agent i yields utility ui = T

n
for i ∈N . We conclude that

an allocation algorithm with vanishing envy is not ( 1
n

+ ε)−Pareto efficient for ε > 0. �

4. Simultaneous Fairness and Efficiency Against Bayesian Adversaries

Having established that it is impossible to simultaneously provide non-trivial fairness and efficiency

guarantees against worst-case adversaries, we turn our attention to weaker, Bayesian adversaries.

We start in Section 4.1 with identical agents and independent and identically distributed (i.i.d.)

items. Using a result by Dickerson et al. (2014), we find that it is straightforward to simultaneously

achieve Pareto efficiency and either envy-freeness with high probability or envy-freeness up to one

good.

We then proceed to our main positive result, an algorithm for correlated agents with i.i.d. items

that gives the optimal fairness and efficiency guarantees. This, of course, implies the same result

for independent agents with i.i.d. items. In Section 4.2, we highlight key insights while ignoring

some of the technical obstacles and find an ex post Pareto efficient algorithm achieving the weaker

fairness guarantee of vanishing envy. We develop the algorithm fully in Section 4.3.

4.1. Identical Agents with IID Items

Suppose an adversary picks a single distribution D, with support GD of size m, and each vit is

sampled i.i.d. from D, for all agents i ∈N and all items t ∈ [T ]. Consider the following variant of

the algorithm discussed in Example 1.

Algorithm 1. If D is a point mass, allocate arriving items in a round-robin manner. Otherwise

allocate each item t to the agent i with the maximum value vit, breaking ties uniformly at random.

Efficiency and fairness can be simultaneously achieved using Algorithm 1.

Theorem 4. Algorithm 1 outputs an allocation that is always Pareto efficient. Furthermore, for

all ε > 0, there exists T0 = T0(ε), such that if T ≥ T0, either the output allocation satisfies pairwise

EF1 or it is envy-free with probability at least 1− ε.
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This result was essentially proved in a different context by Dickerson et al. (2014). They consider

a static setting with T items and n agents where vit is drawn from a distribution Di. It is found

that, under mild conditions on the distributions, an envy free allocation exists with probability 1

as T →∞ as long as each agent receives roughly T/n goods, and each agent has higher expected

utility for the goods they are allocated than the rest. We remove these conditions with a slight and

unavoidable complication in the fairness guarantee. Full details appear in Section EC.5.1.

4.2. Vanishing Envy and Pareto Efficiency for Correlated Agents

Ideally, we would retain the simplicity of Algorithm 1 and extend it to work with stronger adver-

saries. However, when agents’ valuations are no longer identical but merely independent, asking

that agent i has the highest value for an arbitrary item with probability 1/n is a fairly strong

requirement, so the result of Dickerson et al. (2014) no longer holds. One possible approach is to

assign item t to the agent i for whom FDi
(vit) is highest, where FDi

is the quantile function for

agent i’s value distribution. In fact, this approach is fruitful if one focuses solely on fairness, as

shown by Kurokawa et al. (2016). Unfortunately, the resulting allocation is not guaranteed to be

Pareto efficient, as the following example shows.

Example 3. Consider an instance with n= 2 where v1t ∼ U [0,1] and v2t ∼ U [ 1
2
− ε, 1

2
+ ε] for all

t∈ G, where U denotes the uniform distribution. Agent 2 cares chiefly about how many items they

receive. Suppose each item t is allocated to the agent i for whom FDi
(vit) is greatest. Roughly, we

can construct a Pareto improvement by transferring one item t for which FD2
(v2t)>FD1

(v1t) = 1−ε

from agent 2 to agent 1, and transferring back multiple items for which FD2
(v2t)<FD1

(v1t) = ε

All in all, achieving fairness and efficiency simultaneously beyond identical agents seems a lot

more intricate than either property in isolation. We will skip the independent agent case altogether,

and directly study the harder problem of correlated agents: each item t draws its type γj from a

distribution D. Items are i.i.d. but agent values can be correlated.

Before we present the optimal algorithm we illustrate some key ideas by giving a simple algorithm

that achieves ex post Pareto efficiency and a weaker notion of fairness, namely vanishing envy with
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high probability. Recall that fD(γj) is the probability that an item drawn from D has type γj, GD

is the support of D, |GD|=m and vi(γj) is the value of an item of type γj to agent i. For ease of

notation we sometimes refer to item type γj as j.

Our approach is to solve an offline divisible item allocation problem as an intermediate step. The

resulting fractional allocation is X ∈ [0,1]n×m, where n is the number of agents and m= |GD| the

number of types of items in the support of D. For each i∈N , Xij ∈ [0,1] is the proportion of item

type j allocated to agent i. X is constrained to be feasible, i.e.,
∑

i∈N Xij = 1 for all types j ∈GD.

The ith row of X, denoted Xi, is the fractional allocation received by agent i∈N .

Algorithm 2: Pareto Efficient Rounding

Input: Distribution D over item types, agent valuation functions vi.

1. For each γj ∈GD and i∈N , set v′i(γj) = vi(γj)fD(γj).

2. Find the divisible allocation X of GD that maximizes the product of utilities with respect to v′.

3. In the online setting, allocate the newly arrived item t with type γj to agent i with probability

Xij, for all t= 1, . . . , T .

We first show that Algorithm 2 always produces a Pareto efficient allocation. In fact, we show

something much stronger: every rounding of every Pareto efficient fractional allocation X results

in an ex post Pareto efficient allocation.

Theorem 5. Given a distribution D over m item types and valuation function vi for each agent

i ∈ N , let X be a Pareto efficient allocation of GD under valuation functions v′i, with v′i(γj) =

vi(γj) · fD(γj). Let S be a set of T items drawn from D, and A= (A1, . . . ,An) any allocation of S

where an item of type γj is allocated to agent i only if Xij > 0. Then A is Pareto efficient under v.

Proof. By definition v′i is vi scaled by the probability fD(γj) that type γj appears. Let ṽi be

the valuation function when scaling with respect to the observed frequencies in S, i.e. ṽi(γj) =

vi(γ) · fr(γj), where fr(γj) =
∑

t∈S 1{item t has type γj}. We prove the theorem in two steps.

First, we show that X is Pareto efficient under ṽ. Second, we show this implies A is Pareto efficient

under v.
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Suppose for contradiction that X is not Pareto efficient under ṽ. Then there exists an allocation

X ′ that dominates X under ṽ. Let ∆ =X ′−X denote the of item transfers needed to go from X to

X ′. For all c∈ [0,1], the allocation X+ c∆ is feasible and still dominates X under ṽ. We construct

∆′, where ∆′ij = ∆ij · fr(γj)/fD(γj). Observe that the change in utilities induced by transfers ∆′

under v′ equals the change in utilities induced by transfers ∆ under ṽ. Therefore, the (possibly

infeasible) allocation X + ∆′ dominates X under v′, as does X + c∆′ for all c∈ [0,1].

Consider X + c∆′ for 0 < c = minkfD(γk)/fr(γk). Notice c is well-defined and (X + c∆′)ij =

δjX
′
ij + (1− δj)Xij ∈ [0,1], where δj = c · fr(γj)/fD(γj)≤ 1. We conclude X + c∆′ is feasible and

dominates X under v′, a contradiction.

Next, we show that if X is Pareto efficient under ṽ, then A is Pareto efficient under v. Suppose

that A is not efficient under v and is dominated by an allocation A′. Let Y,Y ′ be fractional alloca-

tions of GD, where Yij = (
∑

t∈[T ] 1{t∈Ai and item t has type γj})/(
∑

t∈[T ] 1{item t has type γj})

is the fraction of items of type γj given to agent i in A. Define Y ′ similarly for A′.

The utility of agent i receiving allocation Y under ṽ is:

∑
j∈GD

ṽi(γj)Yij =
∑

j∈GD
vi(γj) · fr(γj) ·

∑
t∈[T ] 1{t∈Ai and item t has type γj}∑

t∈[T ] 1{item t has type γj}

=
∑

j∈GD
vi(γj) ·

(∑
t∈[T ] 1{item t has type γj}

)
·
∑

t∈[T ] 1{t∈Ai and item t has type γj}∑
t∈[T ] 1{item t has type γj}

=
∑

t∈[T ] vit ·1{gt ∈Ai},

i.e., the same as for allocation A under v. Similarly with A′, Y ′. Let ∆ = Y ′ − Y . For any c > 0,

c∆ is a Pareto improvement on any allocation under ṽ, and therefore, the (potentially infeasible)

allocation X + c∆ dominates X under ṽ. In EC.5.2 we show how to find c∗ > 0 such that X + c∗∆

is feasible. Combining the two steps completes the proof. �

Maximizing the product of utilities leads to a fractional Pareto efficient allocation. Therefore,

Theorem 5 implies that Algorithm 2 is ex post Pareto efficient. We now show it also guarantees a

notion of fairness slightly weaker than vanishing envy, namely vanishing envy with high probability.

Theorem 6. For all ε > 0, there exists T0 =
√

4/ε, such that if T ≥ T0, Algorithm 2 outputs an

allocation A such that for all agents i, j, Envyi,j(A) ∈ o(T ) with probability at least 1 − ε and

E[EnvyT ]∈O(
√
T logT ).
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Proof of Theorem 6. The fractional allocation X that maximizes the product of utilities is

envy-free (Varian 1974), which implies
∑

k∈[m] vi(γk)fD(γk)Xik ≥
∑

k∈[m] vi(γk)fD(γk)Xjk for all

pairs of agents i, j ∈N .

Let A be the allocation that results from Algorithm 2. Agent i’s value for agent j’s bundle,

vi(Aj), is a random variable that depends on randomness in both the algorithm and item draws.

Let Ik,jt be an indicator random variable for the event that item t is of type γk and is assigned to

agent j. For any pair of agents i, j ∈ N , vi(Aj) =
∑

t∈[T ]

∑
k∈[m] vi(γk)I

k,j
t . Therefore, E[vi(Aj)] =

T ·
∑

k∈[m] vi(γk)fD(γk)Xjk. By the envy-freeness of the fractional allocation, E[vi(Ai)]≥E[vi(Aj)].

It now follows from Hoeffding’s inequality (Hoeffding 1963) with parameter δ=
√
T logT that

Pr
[
vi(Ai)−E[vi(Ai)]≤−

√
T logT

]
≤ 2exp

(
−2T logT

T

)
=

2

T 2
.

Similarly we bound the deviation of vi(Aj), Pr[vi(Aj)− E[vi(Aj)] ≥
√
T logT ] ≤ 2/T 2. Together,

we conclude for T0 =
√

4/ε that Envyi,j(A) = max{vi(Aj) − vi(Ai),0} ≤ 2
√
T logT ∈ o(T ) with

probability at least 1− 4
T2 ≥ 1− ε.

To compute expected envy at T , we set ε= 1
n2T

in the above, observe T0 = 2n
√
T < T as required,

condition on some pairwise envy exceeding 2
√
T logT and apply a union bound to obtain

E[EnvyT ]≤
∑
i,j∈N

Pr[Envyi,j ≥ 2
√
T logT ]·T+1·2

√
T logT = n2T · 1

n2T
+2
√
T logT ∈O(

√
T logT ) �

4.3. Beyond Vanishing Envy: Optimal Fairness for Correlated Agents

In the proof of Theorem 6 we use standard tail inequalities to show that, with high probability, the

envy between any two agents does not deviate from it’s expectation by more than O(
√
T logT ).

The divisible allocation is envy-free, and rounding it online leads to vanishing envy. If, instead,

the divisible allocation X used to guide the online decisions satisfied strong envy freeness, so for

every pair of agents i, j ∈N , vi(Xi)> vi(Xj), then we could argue similarly that the online integral

allocation would be envy-free with high probability.

Unfortunately, strong envy-free allocations do not always exist, even for divisible items, as in the

case of two agents with identical valuation functions. Interestingly, this condition is also sufficient:



Benadè et al.: Fair and Efficient Online Allocations 25

as long as no two agents have identical valuation functions (up to multiplicative factors), a strongly

envy-free allocation exists (Barbanel 2005). However, this is no longer sufficient if we want both

Pareto efficiency and strong envy-freeness (see EC.6.1 for an example).

Nevertheless, we can achieve a notion of fairness offline that is weaker than strong envy-freeness,

but sufficient for our purposes. We say agent i is indifferent to agent j if vi(Xi) = vi(Xj). We

construct a directed indifference graph I(X) with a vertex for each agent i ∈ N and containing

edge (i, j) exactly when i is indifferent to j under X. For an envy-free allocation X, the absence

of (i, j) in I(X) implies that vi(Xi)> vi(Xj), i.e., strong (pairwise) envy-freeness. We consider the

following notion of fairness.

Definition 1. A fractional allocation X is clique identical strongly envy-free (CISEF) if (1) X

is envy-free; (2) I(X) is a disjoint union of cliques; (3) agents in the same clique have identical

valuations (up to a multiplicative factor) for all items allocated to any member of the clique; and

(4) agents in the same clique have identical allocations.

Our main structural result is that, though Pareto efficiency is incompatible with strong envy-

freeness, it is compatible with CISEF.

Theorem 7. Given any instance with m divisible items and n additive agents, there always exists

an allocation that is simultaneously clique identical strongly envy free (CISEF) and Pareto efficient.

This result is constructive and somewhat technical (see Section EC.6.2). We provide a sketch.

Proof sketch for Theorem 7. We start by solving the Eisenberg-Gale convex program (hence-

forth the E-G program) or, equivalently, by finding the competitive equilibrium from equal incomes.

This is a standard approach for finding an envy-free and Pareto efficient allocation. Recall that the

E-G program with “budgets” e consists of

max
X

n∑
i=1

ei log
m∑
j=1

vijXij, subject to
n∑
i=1

Xij ≤ 1,∀j ∈ [m], and Xij ≥ 0,∀i∈ [n], j ∈ [m].

Specifically, we give each agent a budget ei = 1, and find market-clearing prices (a price pj for

each item j) such that each agent i only buys items that maximize her “bang-per-buck” ratio

vij/pj. Let X0 be this initial allocation, and p and e be the prices and budgets.
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Then, at a high level, we proceed by repeatedly altering X,p and e in such a way that X,p

remains an optimal solution to the convex program with budgets e, while preserving envy-freeness.

This terminates when X satisfies the desired properties. More specifically, at termination I(X) will

be a disjoint set of cliques, where agents in a clique have identical allocations. �

It is worth highlighting a connection between the indifference graph and the bipartite maximum

bang per buck (MBB) graph. Properties of MBB graphs have been crucial to recent algorithmic

progress in approximating Nash social welfare (Cole and Gkatzelis (2015), Garg et al. (2018),

Chaudhury et al. (2018)) and computing equilibria in Arrow-Debreu exchange markets (Garg and

Végh (2019)). In the indifference graph there is an edge from i to j when i is indifferent between

her allocation and the allocation of agent j. We show (Lemma EC.2) this condition is similar to

the condition for edges existing in the MBB graph but are unaware of further overlap.

Algorithm 3 is a slightly modified version of Algorithm 2 which, when using a Pareto efficient

and CISEF fractional allocation to guide the online allocations, yields an integral allocation that

is Pareto efficient ex post and achieves the target fairness properties.

Algorithm 3: Pareto Efficient Clique Rounding

Input: Item distribution D, agent valuation functions vi.

1. For each γj ∈GD and i∈N , define v′i(γj) = vi(γj)fD(γj).

2. Compute a fractional allocation X∗ of GD that is Pareto efficient and CISEF under v′i. Let

C1, · · · ,Cs be the disjoint cliques of I(X∗).

3. In the online setting, assign the newly arrived item t with type γj to clique Ci with probability∑
k∈Ci

X∗kj. When an item is assigned to a clique Ci, allocate it to the agent in Ci who has

received the least value so far according to (all) agents in the clique.

An algorithm for constructing X∗ can be found in Section EC.6.2. Notice in Algorithm 3 step 3

that there is a unique agent with smallest value (up to tie-breaking) since all agents agree on the

value of all items that have gone to the clique (up to multiplicative factors).
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Theorem 8. The allocation resulting from Algorithm 3 is ex post Pareto efficient and, for all

ε > 0, there exists T0 = T0(ε), such that if T ≥ T0, for all agents i, j ∈ N , either i envies j by at

most one item with probability 1 or i does not envy j with probability at least 1− ε.

Proof of Theorem 8. Let X∗ be the fractional CISEF and Pareto efficient allocation and A the

integral allocation produced by Algorithm 3. Pareto efficiency of A follows directly from Theorem 5.

For any two agents i, j ∈N , there are two cases. Suppose i and j belong to the same clique Ck.

Let S be the set of items assigned to Ck during the execution of Algorithm 3, i.e. S = ∪`∈Ck
A`.

Agents in Ck have identical valuations up to a multiplicative factor for the items that they get

with positive probability. Therefore, giving each item to the agent that has received the least value

so far (according to any agent, as they rank allocations of S in the same order) ensures that

Envyi,j(A)≤maxs∈S vis ≤ 1.

Now suppose i and j belong to different cliques Ci and Cj, respectively. By the definition of a

CISEF allocation, we know that vi(X
∗
i ) = vi(X

∗
j ) + c for some constant c > 0.

Let Ã be the fractional allocation where every agent p in clique Cp receives 1/|Cp| fraction of the

items assigned to Cp. In particular, all i′ ∈ Ci receive Ãi′t = 1
|Ci|

1{t ∈ Ak for some agent k ∈Ci}.

Similarly for Ãj. Ãi is the average allocation of agents in Ci (in A) and, as argued earlier, the

maximum envy for two agents in the same clique is at most 1 in A. It follows that |vi(Ai)−vi(Ãi)| ≤

1. Furthermore, agents in the same clique receive identical allocations in Ã, so E[vi(Ãi)−vi(Ãj)] =

TE[vi(X
∗
i )− vi(X∗j )] = cT .

It follows from Hoeffding’s inequality (Hoeffding 1963) that, with probability at least

1−Θ(1/T 2)≥ 1− ε, vi(Ãj)− vi(Ãi)< 2
√
T logT − cT . This is negative for sufficiently large T , so

we can pick T such that vi(Ãj)− vi(Ãi)<−2 with high probability.

We conclude vi(Aj)− vi(Ai)< vi(Ãj)− vi(Ãi) + 2< 0 with probability at least 1− ε. �
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5. Discussion

We finish with a discussion of several pertinent issues that have not been addressed so far.

Additivity assumption. We assume agents have additive valuations. This common assumption

is often considered strong. However, for the purpose of defining envy in our online setting we

believe it is quite natural. Since items arrive over time and are potentially perishable (as in food

bank applications) they are likely used independently of each other. Furthermore, we can reformu-

late Envyij(A) =
∑

t∈Ai
vit−

∑
t∈Aj

vit =
∑T

t=1 vit(It∈Ai
− It∈Aj

) as the sum of per-round envies, so

assuming additive valuations amounts to assuming envy is additive over time.

Computational considerations. Theorem 7 ensures all our algorithms run in polynomial time.

We require an exact solution to the E-G program, which is obtainable in strongly polynomial time

(Orlin 2010). The edge-elimination steps happen O(n2) times. The only remaining question is the

number of bits in the solution (X,p) and budgets e, as the item transfers in Lemmas EC.4 and

EC.5 can both increase the length (in bits) of X and e. However, as we discuss in section EC.6.2,

this increase is limited to a constant number of bits.

Future directions. We very nearly have a complete picture of what is possible when optimizing

fairness or efficiency in isolation. The one exception is minimizing fairness for the non-adaptive

worst-case adversary, where vanishing envy is certainly possible (the Õ(
√
T/n) guarantee of Theo-

rem 1 applies) but we do not even have a super-constant lower bound. An open technical question is

what happens when the distributions chosen by the adversary are allowed to depend on T . Finally,

there is a legitimate question of whether it is reasonable to assume perfect information about agent

utilities. It may be more realistic to assume partial access to utilities, for example in the form of

pairwise comparisons between the item under consideration and previously allocated ones.
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Details omitted from the main text

EC.1. Asymptotic Notation

Let f(n), g(n) be functions defined on the natural numbers. We say f(n) ∈ O(g(n)) when there

exists constants c and n0 so that f(n)≤ c ·g(n) for all n≥ n0. Informally we can say f grows no faster

than g. We say f(n)∈Ω(g(n)) when g(n)∈O(f(n)), and f(n)∈Θ(g(n)) when g(n)∈O(f(n)) and

f(n)∈O(g(n)). The strict version of this relationship is indicated as f(n)∈ o(g(n)), which means

that f(n)∈O(g(n)) but f(n) 6∈Θ(g(n)). Finally f(n)∈ ω(g(n)) when g(n)∈ o(f(n)).

EC.2. Improving on “EF1 or EF w.h.p” is Impossible

In Section 4 we show that it is possible to achieve Pareto efficiency and be either envy-free up

to 1 good, or envy-free with high probability. We now show that it is impossible to improve this

fairness guarantee against the weakest (Bayesian) adversary. Recall that this adversary specifies a

distribution DV and item values vit are drawn i.i.d. from DV .

First, we show that it is not always possible to guarantee envy-freeness with high probability.

Define DV to be the uniform distribution over the set {1}. Note that whenever T is not a multiple

of n, the allocation will not be envy-free. Next, we show that for any x, envy-freeness up to x

goods, is not an achievable guarantee. We use the construction of the lower bound in Section 3.2,

which assumes item values bounded within [0,1]. Recall the following result:

Theorem 2. For n≥ 2 and r < 1, there exists an adversary strategy for setting item values such

that any algorithm must have Envy(A)∈Ω((T/n)r/2), where A is the allocation T items.

In the proof of Theorem 2, an adversary strategy is specified where all agents, excluding the first

two, have no value for any item. The value of the arriving item to the first two agents depends

solely on a state machine, which is described fully in Section 3.2.

Set r = 1
2
. Let c,T0 to be the constants such that for any T ≥ T0, the adversary can guarantee

Envy(A)≥ c(T/n)r/2 = c(T/n)1/4. We then take any T ′ ≥ T0 where c(T ′/n)1/4 >x and set D to be

the uniform distribution over {0,1, ν1, . . . , νT ′}.
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We claim that for any T ≥ T ′, there is a positive probability that the allocation will not be

envy-free up to x goods. First, for the given algorithm, there is a positive probability that the

first T items drawn will follow the adversary strategy. Then, for the remaining items, there is a

positive probability that all the items will have no value to any agent. Thus, for the final allocation

A, we will have Envy(A) > x. Finally, observe that when item values are bounded within [0,1],

Envy(A)>x implies that A is not envy-free up to x goods.

EC.3. Details and Proofs from Section 3.1.

We first take a closer look at the game tree with nodes on T +1 levels. Every node on level 1, . . . , T

has n outgoing arcs labeled 1, . . . , n. The leaf nodes on level T + 1 are labeled by the maximum

envy for the corresponding path, which defines an allocation of the T items. Let Ω be the set of all

paths from the root to a leaf node, so |Ω|= nT . Equivalently, Ω is the set of all possible allocations

of the T items. For an allocation ω ∈ Ω, denote by ωt ∈ [n] the agent to whom item t ∈ [T ] was

allocated by ω.

A fully adaptive strategy s for the adversary is defined by labeling every internal node u with

a value vector s(u), where s(u)i is the value of agent i for the item corresponding to node u. The

algorithm’s strategy consists of selecting an outgoing edge, corresponding to an allocation of the

item with valuation s(u), at every node u. The adversary’s strategy is allowed to depend on the

allocations and valuations so far, i.e., the path from the root to u.

For a given adversary strategy s and an allocation ω, let Envyij(s,ω) denote the envy of agent i

for agent j. Denote with Envy(s,ω) = maxi,j∈[n] Envy
ij(s,ω) the maximum envy experienced by any

agent. The objective of the adversary is to choose a strategy s that maximizes the expected envy

E[Envy(s,ω)], where the expectation is taken over allocating every item uniformly at random.

Consider the algorithm that allocates every item uniformly at random. This is equivalent to

picking a random outgoing edge at each node u.

Lemma 1 The adversary has an optimal adaptive strategy that labels every internal node of the

game tree with a vector in {0,1}n.
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Proof of Lemma 1. Assume for the sake of contradiction that the adversary does not have

an optimal strategy which assigns integral vectors to the nodes of the (adversary-centric) game

tree. Let s be the optimal strategy with the smallest number of fractional values. Without loss of

generality, let u be a node on layer `∈ [T ] for which the value assigned to player i∈ [n] is fractional,

i.e., 0< s(u)i < 1. The values ` and i are fixed for the remainder of this proof. Define alternative

strategies s′ and s′′ identical to s, except that s′(u)i = 1 and s′′(u)i = 0. We wish to arrive at the

contradiction that E [Envy(s,ω)] ≤ E[Envy(s∗, ω)] for s∗ = s′ or s′′, where the expectation is over

the randomness of the allocation algorithm. Denote with Ωu all paths passing through u. The envy

associated with paths in Ω \Ωu is unaffected by the move from s to s′ or s′′ and may be safely

ignored.

When agent i is not the unique agent with maximum envy, it holds that Envy(s,ω)≤ Envy(s′, ω)

and Envy(s,ω)≤ Envy(s′′, ω) as desired (recall that changing agent i’s valuation for an item does

not affect other agents’ envy). It remains to consider the set of paths

Ω+
u =

{
ω ∈Ω : max

j∈[n]
Envyij(s,ω)> max

j∈[n]\{i}
max
k∈[n]

Envyjk(s,ω)

}
,

in which agent i is the unique agent with maximum envy (and this envy is strictly positive). We

can further partition Ω+
u according to which agent receives item `; let Ω+,j

u be the set of paths in

Ω+
u in which agent j ∈ [n] gets item `, and for any J ⊆ [n], set Ω+,J

u = ∪j∈JΩ+,j
u . We analyze three

different cases: (1) whether the player that gets item ` is player i, (2) a player j∗ for whom player

i has maximum envy, or (3) another player. Define

J∗ =

{
j∗ ∈ [n] : Envyij

∗
(s,ω) = max

j∈[n]
Envyij(s,ω)

}
.

Also, for convenience, set f = s(u)i and J< = [n] \ {J∗ ∪{i}}.

We first look at s′. The three cases are:

1. For ω ∈Ω+,i
u : Envy(s,ω)− (1− f)≤ Envy(s′, ω)≤ Envy(s,ω).

2. For ω ∈Ω+,J∗
u : Envy(s′, ω) = Envy(s,ω) + (1− f).

3. For ω ∈Ω+,J<

u : Envy(s,ω)≤ Envy(s′, ω)≤ Envy(s,ω) + (1− f).
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The only outcomes where envy can decrease when changing the adversary’s strategy from s to s′

are those in Ω+,i
u . We can compute the effect of changing s to s′ on the expected maximum envy as

E[Envy(s,ω)] =
∑
ω∈Ω

Pr[ω] ·Envy(s,ω)

=
1

nT

 ∑
ω∈Ω

+,i
u

Envy(s,ω) +
∑

ω∈Ω
+,J∗
u

Envy(s,ω) +
∑

ω∈Ω
+,J<
u

Envy(s,ω)


≤ 1

nT

 ∑
ω∈Ω

+,i
u

(Envy(s′, ω) + (1− f)) +
∑

ω∈Ω
+,J∗
u

(Envy(s′, ω)− (1− f)) +
∑

ω∈Ω
+,J<
u

Envy(s′, ω)


=E[Envy(s′, ω)] +

1− f
nT

(∣∣Ω+,i
u

∣∣− ∣∣Ω+,J∗

u

∣∣) .
If
∣∣Ω+,i

u

∣∣ ≤ ∣∣Ω+,J∗
u

∣∣, it follows that E[Envy(s,ω)] ≤ E[Envy(s′, ω)]. Assume therefore that
∣∣Ω+,i

u

∣∣ >∣∣Ω+,J∗
u

∣∣. An identical analysis for s′′ shows that

1. For ω ∈Ω+,i
u : Envy(s′′, ω) = Envy(s,ω) + f .

2. For ω ∈Ω+,J∗
u : Envy(s,ω)− f ≤ Envy(s′′, ω)≤ Envy(s,ω).

3. For ω ∈Ω+,J<

u : Envy(s,ω) = Envy(s′′, ω).

Expanding the computation of the expected value as before shows

E[Envy(s,ω)]≤E[Envy(s′, ω)] +
f

nT

(
−
∣∣Ω+,i

u

∣∣+ ∣∣Ω+,J∗

u

∣∣) .
By assumption

∣∣Ω+,i
u

∣∣> ∣∣Ω+,J∗
u

∣∣, so E[Envy(s,ω)]≤E[Envy(s′′, ω)], concluding the proof. �

Lemma 2 The adversary has an optimal adaptive strategy that labels every internal node of the

game tree with the vector 1n.

Proof of Lemma 2. By Lemma 1, the adversary has an optimal strategy that labels every

internal node with a vector in {0,1}n. Let s be such an optimal strategy with the smallest number

of zeros, and suppose (for the sake of contradiction) that there exist internal nodes that are not

labeled 1n. Let u on layer ` ∈ [T ] be the node closest to a leaf node for which s(u) contains a 0

and s(u′) = 1n for all descendants u′ of u. Without loss of generality assume s(u)i = 0, so agent
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i has value 0 for item ` at node u. Define a strategy s′ identical to s except that s′(u)i = 1. Let

j(ω)∈ arg maxj∈[n] Envy
ij(s,ω).

For any fixed ω ∈Ω, changing s to s′ only changes the envy of agent i and only for paths that

go through u. In particular, if ω` 6= i, the envy of agent i toward agent ω` increases by 1, which

only helps the adversary. By contrast, if ω` = i, the envy of agent i decreases by 1, toward every

agent j such that Envyij(s,ω)> 0; the maximum envy, Envy(s,ω), is only affected if Envy(s,ω) =

Envyi,j(ω)(s,ω).

Thus, let ω ∈ Ω be an arbitrary path going through u with ω` = i and satisfying Envy(s,ω) =

Envyi,j(ω)(s,ω) > 0. Since agent i may not have been the unique agent having envy equal to

Envy(s,ω), Envy(s′, ω)≥ Envy(s,ω)−1. Now consider the path ω′ that is identical to ω except that

ω` = j(ω). Observe that Envy(s′, ω′) = Envy(s,ω′)+1. Hence, any decrease in envy due to allocating

item ` to agent i on ω is compensated for (in the calculation of expected envy) along ω′. Since

ω was picked arbitrarily and the mapping ω 7→ ω′ is injective, it follows that the expected envy

under s′ is at least the expected envy under s, and s′ has fewer zeros than s, contradicting our

assumption on s. �

The version of Bernstein’s inequality used is:

Lemma EC.1 (Bernstein 1946). Let X1, . . . ,XT be independent variables with E [Xt] = 0 and

|Xt| ≤M almost surely for all t∈ [T ]. Then, for all λ> 0,

Pr

[
T∑
t=1

Xt >λ

]
≤ exp

(
−

1
2
λ2∑T

t=1 E [X2
t ] + 1

3
Mλ

)
.

Theorem 2. For any n≥ 2 and r < 1, there exists an adversary strategy for setting item values

such that any algorithm must have EnvyT ∈Ω((T/n)r/2).

Proof of Theorem 2. We augment the instance of Figure 1 in the following way. In addition to

the first two agents, L and R, we have n−2 other agents. Each of these other agents will not value

any of the items that arrive; hence, the nonzero values remain the same as before. State transitions

work as follows. If the algorithm allocates an item to agent L or agent R, the transitions are the

same as when n= 2. Otherwise, the adversary will remain in the same state.
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Let T0 be the number of items allocated to either agent L or R. We break the analysis into two

cases. First, if T0 ∈ Ω(T/n), then, EnvyT ∈ Ω((T/n)r/2) by the analysis of Lemma 3. Otherwise,

T0 ∈ o(T/n) and therefore T −T0 ∈Θ(T ), i.e., agents 3 through n receive many items. This implies

that there exists an agent i ∈ [3, n] that is allocated Ω(T/n) items. Without loss of generality, at

least half these items were allocated in the left states, in which agent L values each item at 1, so

that agent L has Ω(T/n) value for the items received by agent i. The value of agent L for her

own allocation is at most O(T0), i.e., o(T/n). Therefore, the envy of agent L for agent i is at least

Θ(T/n)− o(T/n)∈Θ(T/n). �

EC.4. Proofs from Section 3.2.

Lemma 4. A∗(K)∈OPT(K).

Proof of Lemma 4. An algorithm that starts at state 0 and spends T ′ steps in the left states

can be described as a sequence of choices st ∈ {L,R} for t ∈ [T ′] such that s1 = L, and at every

t∈ [T ′], agent L has received at least as many of the first t items as agent R (to avoid entering the

right states). We refer to the state at time t as the state after the algorithm choice st.

Consider any A(K)∈OPT(K). We show that the corresponding sequence of allocations satisfy:

(1) at time T ′ the state is L0, so agent L receives the same number of items as agent R; and (2)

there is exactly one R move at states L1, . . . ,LK−1. This proves the lemma, since A∗(K) is the

only algorithm that satisfies these two conditions. We utilize the fact that the envy of an allocation

sequence can be calculated from the number of L and R moves in every state: at state Ld, an L

move increases the envy of agent R by vd while an R move decreases it by vd.

We start with the first property: suppose that the state at time T ′ is not 0. Let t be the last

index such that st =L. Allocating st =R instead (and s` =R for the remaining steps ` > t) reduces

the envy of agent R without entering state R1, a contradiction.

For the second property, it suffices to show that if st = L and st+1 = R, then it must be that

at step t the state is LK−1 (and therefore at step t+ 1 the state is LK). Assume this is not the

case, and we have such a t where the algorithm is in state LK̂−1, K̂ <K. Let ` be a step in which
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the algorithm is in state LK−1, which exists by the definition of A(K). Assume that ` > t + 1

(an analogous argument can be applied to the case that ` < t). We divide T ′ into three phases:

(1) the first t − 1 items, (2) the next ` − (t + 1) items, and (3) the last T ′ − ` + 2 items and

consider s′ = s1, . . . , st−1, st+2, . . . , s`, st, st+1, s`+1, . . . , sT ′ . Notice that s′ is s, except the alternating

allocations L then R are now made at state LK−1 instead of at LK̂−1. By construction, sequence

s′ never goes past state LK . We now prove that, using s′, the envy decreases with respect to s at

each time step after t− 1, contradicting the assumption A(K)∈OPT(K).

In phase (1), the envy is unchanged. For phase (2), when using A(K), the pair of moves st and

st+1 increases envy by vK̂ − vK̂−1. Hence, in comparison, s′ has that much less envy during each

time step of phase (2). At the start of phase (3) in s′, the alternating allocations are performed at

state LK−1, increasing envy (in s′) by vK−1 − vK < vK̂ − vK̂+1. At all remaining steps in (3), the

envy is smaller in s′ (compared to s) by (vK̂ − vK̂+1)− (vK−1− vK). This completes the proof that

A(K) must satisfy both properties; the lemma follows. �

EC.5. Details Omitted from Section 4.1

EC.5.1. Proof of Theorem 4

Dickerson et al. (2014) consider a static setting with T items and n agents where vit is drawn

from a distribution Di. They show that, under mild conditions on the distributions, an envy free

allocation exists with probability 1 as T →∞ as long as each agent receives roughly T/n goods,

and each agent has higher expected utility for the good they are allocated than those they are not

allocated.

Theorem EC.1 (Dickerson et al. (2014)). Assume that for all i, j ∈N and items t the input

distributions satisfy (1) Pr[arg maxk∈N vkt = {i}] = 1/n, and (2) there exist constants µ,µ∗ such

that

0<E[vit|arg max
k∈N

vkt = {j}]≤ µ<µ∗ ≤E[vit|arg max
k∈N

vkt = {i}].

Then for all n ∈O(K/lnK), allocating each item to the agent with the highest value is envy free

with probability 1 as K→∞.
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Given this result, it is straightforward to prove Theorem 4.

Theorem 4. Algorithm 1 outputs an allocation that is always Pareto efficient. Furthermore, for

all ε > 0, there exists T0 = T0(ε), such that if T ≥ T0, the output allocation satisfies pairwise EF1

or is envy-free with probability at least 1− ε.

Proof of Theorem 4. Allocating to the agent with the highest value maximizes social welfare

and generates a Pareto efficient allocation. When D is a point mass, vit = v for all i ∈ N and

all t ∈ G, therefore allocating the arriving items in a round-robin manner is EF1. As observed by

Kurokawa et al. (2016) in a static setting, proving the following two properties about our allocation

algorithm allows the proof of Theorem EC.1 of Dickerson et al. (2014) to go through. The first

property is that the probability that agent i wins item t is 1/n for all agents i and items t. This

is satisfied, as all agent values are drawn from the same distribution and tie-breaking is done

randomly. The second property is that for some constant ∆> 0, and for all agents i, j ∈N where

i 6= j: E[vit | i receives t]−E[vit | j receives t]≥∆.

We now show that when the distribution D is not a point mass, allocating items to the agent i

with the maximum value vid and breaking ties uniformly at random ensures that for some constant

∆> 0, and for all agents i, j ∈N where i 6= j, E[vit | i receives t]−E[vit | j receives t]≥∆.

We largely follow the proof of Lemma 3.2 by Kurokawa et al. (2016) with some simplifications

and importantly, handling the case when the distribution D is discrete.

Since agents’ value distributions are identical, we can restate this as:

E[vit | i receives t]−E[vit | i does not receive t]≥∆.

Agents are all identical and the algorithm always allocates the item to an agent with the max-

imum value for it. This implies that E[vit | i receives t] = E[max(v1t, . . . , vnt)]. Next, if D is not a

point mass, we know that Var[D]> 0. From here, we can show that E[max(v1t, . . . , vnt)]>E[vit].

Let Var[D] = c. Let X̄ =E[X], p= Pr[X < X̄]. Observe that when Var[D]> 0, p∈ (0,1).

c= Var[D]
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=E[(X − X̄)2]

≤E[|X − X̄|]

= pE[X̄ −X |X < X̄] + (1− p)E[X − X̄ |X ≥ X̄]

=−pE[X |X < X̄] + (1− p)E[X |X ≥ X̄] + (2p− 1)X̄

From here, we analyze the cases where p≤ 1/2 or p > 1/2 separately.

Suppose that p > 1/2, we use the substitution X̄ = pE[X |X < X̄] + (1− p)E[X |X ≥ X̄] and

then we rewrite the above as:

c≤ 2p(X̄ −E[X |X < X̄])

=⇒ c

2
≤ X̄ −E[X |X < X̄]≤E[X |X ≥ X̄]−E[X |X < X̄]

Similarly, for p≤ 1/2,

c≤ 2(1− p)(E[X |X ≥ X̄]− X̄)

=⇒ c

2
≤E[X |X ≥ X̄]− X̄ ≤E[X |X ≥ X̄]−E[X |X < X̄]

Finally,

E[max(v1t, . . . , vnt)]≥ (1− pn)E[X |X ≥ X̄] + pnE[X |X < X̄]

≥ (1− p)E[X |X ≥ X̄] + pE[X |X < X̄]

+ (p− pn)(E[X |X ≥ X̄]−E[X |X < X̄])

≥ (1− p)E[X |X ≥ X̄] + pE[X |X < X̄] + (p− pn)
c

2

=E[vit] + (p− pn)
c

2

Thus, we have that E[vit | i receives t]≥E[vit]+(p−pn) c
2
. From law of total expectation, we know

that E[vit] = 1
n
E[vit | i receives t] + n−1

n
E[vit | i does not receive t]. We can combine and rearrange

to also show that E[vit | i does not receive t]≤E[vit]− (p− pn) c
2(n−1)

, which allows us to conclude

E[vit | i receives t]−E[vit | i does not receive t]≥ (p− pn) · c

2(n− 1)
+ (p− pn)

c

2

Setting ∆ to (p−pn) c
2(n−1)

+ (p−pn) c
2
, which is positive since p∈ (0,1) and c > 0, completes the

proof. �
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EC.5.2. Detail Missing from Proof of Theorem 5

Define

c∗ = min

{
min

i∈N ,j∈[m]:Yij>Y
′
ij

Xij

Yij −Y ′ij
, min
i∈N ,j∈[m]:Yij<Y

′
ij

1−Xij

Y ′ij −Yij

}
.

Y and Y ′ are both feasible and strictly different allocations, so there must be some agent i and item

type γj such that Yij > Y ′ij and other some other pair î, ĵ such that Yîĵ > Y ′
îĵ

. Furthermore, since

Yij > 0 implies that Xij > 0 (recall that an item t of type γj is in Ai only if Xij > 0), we have that

c∗ > 0. It remains to show that X + c∗∆ is feasible. There are three cases for an agent i and item

type γj: (1) Yij = Y ′ij, (2) Yij > Y ′ij, (3) Yij < Y ′ij. For case (1), trivially (X + c∗∆)ij =Xij ∈ [0,1].

For case (2), (X + c∗∆)ij <Xij ≤ 1, and (X + c∗∆)ij ≥Xij +
Xij

Yij−Y ′ij
· (Y ′ij − Yij) = 0. Finally, for

case (3), (X + c∗∆)ij >Xij ≥ 0, and (X + c∗∆)ij >Xij +
1−Xij

Y ′ij−Yij
· (Y ′ij −Yij)≤ 1.

EC.6. Details from Section 4.3 - Beyond Vanishing Envy

EC.6.1. Example Showing Strict Envy-Freeness and Pareto Efficiency is not Achievable

Here, we give an instance where strict envy-freeness and Pareto efficiency are not achievable even

though agents’ valuations are not identical up to a multiplicative factor.

Table EC.1 Instance with three

agents.

Item g1 g2 g3

Value of agent 1 1 1 1
Value of agent 2 0.5 1 1
Value of agent 3 0.25 1 1

In Table EC.1, none of the three agents are identical. However, we claim that in any envy-free

and Pareto efficient allocation, agents 2 and 3 will be indifferent towards each other’s allocation.

Intuitively, the problem is that agents 2 and 3 have identical valuations over the items they could

possibly receive in an envy-free and Pareto efficient allocation, items 2 and 3.

Let X be any Pareto efficient and envy-free allocation. Since it is envy-free and agent 1 is

indifferent between the items, X11 +X12 +X13 ≥ 1.
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Next, we show that if X is Pareto efficient, then X11 = 1. If X11 < 1, then either X12 > 0 or

X13 > 0. In addition, either X21 > 0 or X31 > 0. Without loss of generality, suppose X12 > 0 and

X21 > 0. Then, letting c= min(X21,X12), observe that allocation X ′ Pareto dominates X, so X is

not Pareto efficient, where

X ′ =X +


c −c 0

−c c 0

0 0 0

 .
Therefore, we know X11 = 1 and as a result, X21 =X31 = 0. Finally, because agents 2 and 3 have

identical valuations for items 2 and 3, we have X22 +X23 ≥ 1 and X32 +X33 ≥ 1. Together, this

implies that X22 +X23 =X32 +X33 = 1 so agents 2 and 3 will be indifferent towards each other’s

allocations.

EC.6.2. Proof of Theorem 7

In this section we prove our main structural result.

Theorem 7 Given any instance with m divisible items and n additive agents, there always exists

an allocation that is simultaneously clique identical strongly envy free (CISEF) and Pareto efficient.

We prove Theorem 7 by building on a standard approach for finding an envy-free and Pareto

efficient allocation, namely solving the Eisenberg-Gale convex program (henceforth E-G program).

Recall that the E-G program with “budgets” e is the following.

max
n∑
i=1

ei log
m∑
j=1

vijxij, subject to
n∑
i=1

xij ≤ 1,∀j ∈ [m], and xij ≥ 0,∀i∈ [n], j ∈ [m].

We use x and X interchangeably for the allocation. When ei = ej for all i, j, the outcome is

also known as the competitive equilibrium from equal incomes (CEEI), which is envy-free (Varian

1974). There exists a solution to the E-G program with primal variables x and dual variables p

(dual variable pj ≥ 0 corresponds to the first constraint above) satisfying the following conditions.

∀j ∈ [m] : pj > 0 =⇒
∑n

i=1 xij = 1 (EC.1)
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∀i∈ [n], j ∈ [m] :
vij
pj
≤

∑m
k=1 vikxik

ei
(EC.2)

∀i∈ [n], j ∈ [m] : xij > 0 =⇒ vij
pj

=
∑m

k=1 vikxik
ei

= maxk∈[m]
vik
pk
. (EC.3)

These conditions are both necessary and sufficient for a feasible solution to be optimal, and can

be derived from the KKT conditions; for completeness we show the derivation in EC.6.2.1. The

standard interpretation is that ei is the budget of agent i and pj is the price for item j. Then, a

solution x,p consists of prices p and allocations x, such that each agent spends their entire budget

ei on “optimal” items and all items are completely sold. We say that an item j is “optimal” for

agent i given prices p, when it maximizes the ratio vij/pj, also known as the bang-per-buck.

Given a solution x,p, we write Xi for the allocation of agent i, and we say that item k is allocated

to i, k ∈Xi, if xik > 0. We assume without loss of generality that for any solution, x,p, we have

∀j : pj > 0. This holds as long as each item has at least one agent who values it; if this is not the

case we can safely drop those items. We prove the following, which immediately implies Pareto

efficiency and Theorem 7 since the objective function is monotone.

Theorem EC.2. There exist budgets e and an optimal solution (x = X,p) to the E-G convex

program with budgets e, such that X is clique identical strongly envy-free.

We start with an allocation X that is an optimal solution to the E-G convex program with identical

agent budgets ei = 1 for all i. Then, at a high level, we break the algorithm into two procedures

that jointly alter x,p and e such that x,p remains an optimal solution to the convex program with

budgets e, while preserving envy-freeness, until X satisfies the desired properties. Specifically, the

indifference graph I(X) will end up being a disjoint set of cliques, such that agents in a clique have

identical allocations.

Optimal Transfers. Given an allocation, let ri := vi(Ai)

ei
be the bang-per-buck of agent i. We

say that agent i is indifferent towards any item k for which vik
pk

= ri. We first give a useful property

of solutions x,p.



ec13

Lemma EC.2. Given a solution x,p of an E-G program with budgets e, for all agents i, j such

that ei = ej, vi(Xi) = vi(Xj) if and only if ∀k ∈Xj : vik
pk

= ri.

First, we show that
∑

k∈Xi
pkxik = ei for any agent i.

∑
k∈Xi

pkxik =KKT condition EC.3
∑
k∈Xi

vik · ei∑
k′∈Xi

vik′xik′
xik = ei. (EC.4)

For the “only if” direction, we know for all items k ∈Xj, vik = ripk. We can substitute this into

our previous equation to get:

vi(Xi) =
∑
k∈Xi

vikxik =Cond. EC.3
∑
k∈Xi

ripkxik = riei = riej =Eq. EC.4
∑
k∈Xj

ripkxjk =
∑
k∈Xj

vikxjk = vi(Xj).

For the “if” direction, assume that there is an item k∗ ∈ Xj such that vik∗
pk∗
6= ri. Then, KKT

condition EC.3 implies that vik∗ < ripk∗ , since k∗’s bang-per-buck is at most ri. Thus, we have:

vi(Xi) =
∑
k∈Xi

vikxik =
∑
k∈Xi

ripkxik = riei = riej =
∑
k∈Xj

ripkxjk >
∑
k∈Xj

vikxjk = vi(Xj). �

Lemma EC.2 essentially tells us that under equal budgets, if agent i is indifferent to agent j’s

allocation, then j’s items are maximum bang-per-buck items for i as well. This gives some intuition

for our approach. Assuming equal budgets, if we move items along indifference edges, we can avoid

violating the KKT conditions and our solution will still be optimal. We formalize this idea in

Lemma EC.3, but first need the following definition. Given a solution (x=X,p) for budgets e, we

consider a change in allocation of items ∆, where ∆ik is the change in the allocation of item k for

agent i.

Definition EC.1 (Optimal transfer). A transfer of items ∆ is an optimal transfer if for all

items k: (1)
∑

i∈[n] ∆ik = 0, i.e. the total allocation of item k remains unchanged, (2) xik+∆ik ∈ [0,1]

for all agents i, i.e. x+ ∆ is feasible, and (3) for all agents i such that ∆ik > 0, vik
pk

= ri, i.e. if agent

i is given more of item k, then item k maximizes bang-per-buck for agent i.
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Lemma EC.3. Let (x = X,p) be a solution for budgets e and ∆ be an optimal transfer. Let δ

represent the change in budget where δi =
∑

k∈G pk ·∆ik. Let X ′ =X + ∆. Then (x′ =X ′,p) is a

solution for budgets e′ = e+ δ.

Proof of Lemma EC.3. (x,p,e) must satisfy the KKT conditions. p does not change and x′ is

feasible by definition; it remains to show that (x′,p,e′) satisfies the KKT conditions.

KKT condition EC.1 is satisfied since
∑

i∈[n] ∆ik = 0 for all items k. Furthermore, notice that

∆ik 6= 0 implies that vik
pk

= ri: if ∆ik > 0 this fact is implied by the definition of an optimal transfer,

while if ∆ik < 0, for x+ ∆ to be feasible, it must be that xik > 0, so vik
pk

= ri is implied by KKT

condition EC.3. Thus:

∑m

k=1 vikx
′
ik

e′i
=

∑m

k=1 vikxik +
∑m

k=1 vik∆ik

ei + δi
=

∑m

k=1 vikxik +
∑m

k=1 ripk∆ik

ei + δi

=

∑m

k=1 vikxik + riδi
ei + δi

=

∑m

k=1 vikxik
ei

,

where the last equality is implied by the fact that ri = vi(Xi)/ei. Therefore, the RHS of KKT

condition EC.2 does not change (the LHS of course didn’t change since it only has values and

prices), so KKT condition EC.2 is still satisfied. In addition, when xik > 0, KKT condition EC.3 is

satisfied by similar reasoning. Finally, it is possible that xik = 0 but x′ik > 0. In this case, we know

that ∆ik > 0, and therefore vik
pk

= ri =
∑m

k=1 vikxik
ei

, by the definition of an optimal transfer and the

definition of rj. Thus, KKT condition EC.3 is satisfied. �

Indifference Edge Elimination. For an allocation X and subset of agents S ⊆N , we over-

load notation, and let XS refer to the allocation for agents in S. A set of agents S have identical

budgets under e if, for all i ∈ S, ei = c for some c. Recall that for an allocation X, I(X) refers

to the indifference graph, a graph where we have a vertex for every agent and an edge from (the

vertices corresponding to) agent i to agent j if vi(Xi) = vi(Xj). In the remainder of this section

we refer to agents and vertices interchangeably. Also, recall that for a directed graph G= (V,E),

a clique is a subset of vertices S ⊆ V such that for all v ∈ S,u ∈ S, where u 6= v, there is an edge
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(u, v) ∈E, and that a weakly connected component (henceforth just component) S is a subset of

the agents such that for each pair of agents i, j ∈ S, there is either a path from i to j or a path

from j to i, and S is a maximal subgraph with this property.

Definition EC.2 (Clique acyclic graph). A directed graph G = (V,E) is clique acyclic if

the vertices can be partitioned into cliques C1, . . . ,Ck, that is, Ci ⊆ V for all i, ∪ki=1Ci = V , and

Ci ∩Cj = ∅ for all i 6= j, and where for any cycle K in the graph, K only contains vertices from Ci

for some i.

A crucial step towards producing a CISEF allocation will be to find an allocation X such that

I(X) is clique acyclic and envy-free, where agents in each clique have the same allocation.

Lemma EC.4. There exists an algorithm that takes as input a solution (x =X,p) for budgets e

and a component S with identical budgets, and finds a solution (x′ = X ′,p) for budgets e where

I(X ′S) is clique acyclic and agents in each clique have identical allocations without violating envy-

freeness or adding new indifference edges to I(X).

Take the allocation X and indifference graph I(XS). At a high level we attempt to apply one of

the following two operations; we only apply operation 2 only if operation 1 cannot be done.

• Operation 1: Eliminate every cycle that is not a clique.

• Operation 2: Partition the graph into cliques by merging cliques and “re-balancing” allocations.

We explain in detail how these operations work, prove they satisfy some basic properties and

proceed to use them to prove the Lemma EC.4.

Operation 1. Without loss of generality, suppose we have a cycle K = (1, . . . k), where edges go

from agent i to agent i+ 1 (modulo k). If there exists an i where there is no edge from i− 1 to

i+ 1, we show how to eliminate at least one edge from the cycle while keeping vi(Xi) unchanged

for all agents and not creating new indifference edges.

To perform this operation notice that the absence of an edge from i−1 to i+1, by Lemma EC.2,

implies that there exists an item ` ∈ Xi+1 that is not a bang-per-buck item for agent i− 1, i.e.
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vi−1,`

p`
< ri−1. We construct an optimal transfer ∆, parameterized by a budget b, as follows. Agent

i will take b worth of item ` (specifically b
p`

units) from agent i+ 1. All other agents i′ ∈K, i′ 6= i,

will take arbitrary items of total worth b from i′+ 1. Crucially, for all of the transfers, since there

is an (i′, i′ + 1) edge for all i′ ∈K, i.e. vi′(Xi′) = vi′(Xi′+1), Lemma EC.2 implies the items taken

maximize bang-per-buck for i′. Next, notice that we can find a b > 0 small enough that X + ∆

is a feasible allocation. In particular, letting eS be the budget of agents in S, we can choose any

b≤min(eS, xi+1,l · pl) = xi+1,l · pl (i.e we just need to ensure agent i− 1 does not take more than

xi+1,l of item l). Finally, our transfers preserve the total allocation of each item and thus, ∆ is

an optimal transfer. Each agent loses and gains b worth of items so there is no change in budget

associated with ∆. Therefore, Lemma EC.3 implies that (x′ =X ′,p) is a solution for budgets e.

Thus for all agents i, vi(Xi) = vi(X
′
i). Next, observe that vi−1(X ′i)< vi−1(Xi) since it decreases

by b · ri−1 but increases by strictly less than b · ri−1. Since vi−1(Xi−1) stays the same, this implies

that the indifference edge from agent i− 1 to agent i disappears. Finally, we want to ensure that

we do not violate envy-freeness or add new indifference edges. There are two cases. The first case

is that i is indifferent to j in X: we only modify allocations in S, and S is a component, so we only

consider when i∈ S, j ∈ S. Because (x′,p) is a solution for budgets e, and agents in S have identical

budgets, agent i will still not envy j in X ′. Otherwise, the second case is that i is not indifferent

to j in X and we want to find a b > 0 small enough such that i will not envy or be indifferent to

j in X ′. For any pair (i, j), we are concerned about vi(Ai)− vi(Aj). Operation 1 guarantees that

vi(Xi) = vi(X
′
i), so vi(Ai)− vi(Aj) can change only when j ∈K. Define c = maxi∈N ,k∈[m]

vik
pk

: the

maximum bang-per-buck for any agent. Then, choose b such that

b <min

{
vi(Ai)− vi(Aj)

c
: i∈N , j ∈K,vi(Ai)− vi(Aj)> 0

}
.

The budget constraint of b ensures that vi(Aj) will change by at most b · c < vi(Ai)− vi(Aj).

We can repeatedly use the above process to eliminate all non-clique cycles by eliminating cycles

in order of size. Suppose that all cycles of size k form a clique. It is then possible to ensure that

for all cycles of size k+ 1, the vertices form a clique. To see why, consider an arbitrary cycle K of
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size k+ 1. If there exists an i such that there is no edge from agent i− 1 to agent i+ 1, we can

eliminate the cycle. Otherwise, for all i, there is an edge from agent i− 1 to agent i+ 1. Then,

we know that for all i, K \ {i} is a cycle of length k, and therefore a clique of size k, implying

the vertices of K form a clique of size k + 1. Note that any cycle of size 2 immediately forms a

clique. Therefore, if we repeatedly choose the smallest size non-clique cycle and eliminate it, we

will eventually eliminate all cycles that are not a clique.

Operation 2. We construct a set of cliques C1, . . .Cs by starting with each vertex in its own clique

and arbitrarily merging cliques if the resulting set of vertices would still form a clique. Suppose

we merge to form a clique C = {1,2, . . . , `}. Lemma EC.2 implies that for any agent i ∈ C, i is

indifferent to any item in XC =X1 + . . .+X`, that is viz
pz

= ri for all items z ∈XC . Thus, we can

perform the following re-balance operation to form X ′: for each agent i∈C we set X ′i = 1
|C|XC and

for all other agents i /∈C, X ′i =Xi.

First, note that this is an optimal transfer, by definition. We want to show that we do not violate

envy-freeness or add new indifference edges. There are three cases for the existence of an edge

from agent i to agent j. If both agents are in C, nothing changes. If i∈C, j /∈C, nothing changes

since vi(Xi) is unchanged. If i /∈C, j ∈C, if i was indifferent to all agents in C, nothing changes.

Otherwise, i is not indifferent to some agent in C, in which case after the re-balance, i will lose

their indifference edge towards all agents in C.

Proof of Lemma EC.4. We start by applying operation 1, which eliminates every cycle that is

not a clique. Now, notice that eliminating all non-clique cycles does not imply that we can partition

the graph into cliques in a way that is clique acyclic. To see this most clearly, consider a 5 vertex

instance, where vertices 1, 2, 3 form a clique, and so do vertices 3, 4, 5. All cycles are also cliques,

but the graph is still not clique acyclic (the most “tempting” partition has the issue that cycle

(1,2,3) contains a vertex that belongs to two cliques). This is where operation 2 comes in.

Once we have eliminated all non-clique cycles, if we are not in a clique acyclic graph with the

desired properties, we apply operation 2. It is possible that during the execution of operation 2, an
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indifference edge will be eliminated. When this happens, we stop with operation 2 and go back to

applying operation 1, and so on. Eventually, this process terminates: neither operation creates any

new edges, and furthermore, each time we loop we eliminate at least one edge. The two operations

preserve the property that (x′ =X ′,p) is a solution for budgets e, and that X ′ is envy-free, without

adding new indifference edges. In addition, re-balancing in operation 2 ensures that agents in each

clique have identical allocations. It remains to show that I(X ′) is clique acyclic upon termination.

Assume for sake of contradiction that there exists a cycle that includes vertices in two different

cliques C1,C2. Therefore there exists some edge from C1 to C2 and an edge from C2 to C1. Due

to the fact that agents in a clique have identical allocations, this implies that there exists agents

i1 ∈ C1, i2 ∈ C2 such that i1 has edges to all of C2 and i2 has edges to all of C1. Thus, we can

construct a cycle, and thus a clique, containing all agents in C1 ∪C2. Then, C1 ∪C2 form a clique,

contradicting the fact that no more mergers were possible by operation 2. �

Once we have an allocation with the properties of Lemma EC.4, it remains to eliminate the edges

between cliques, while preserving the property that agents in a clique have the same allocation.

Lemma EC.5. There exists an algorithm that takes as input an allocation X and component S with

identical budgets such that I(XS) is clique acyclic (with at least one non-clique edge) and agents in

each clique have identical allocations, and finds a set of agent budgets e′ and solution (x′ =X ′,p)

for budgets e′, where I(X ′S) consists of k > 2 components S1, S2, · · · , Sk, each component consists

of agents with identical budgets, I(X ′S) has strictly fewer edges than I(XS), and the new allocation

does not violate envy-freeness or add new indifference edges.

Proof of Lemma EC.5. For I(XS), we view each clique as a vertex. Consider the graph G,

where each vertex is a clique Ci (of I(XS)), and there is an edge between Ci and Cj if there exists

a vi ∈Ci, vj ∈Cj where (vi, vj) is an edge in I(XS). G forms a directed acyclic graph, since I(XS)

is clique acyclic. Let Cs be a source vertex in G and let Sk = {C1, . . . ,Cl} be the sink vertices

reachable from Cs. We know a source and sink vertex exists because we assume there is at least

one non-clique edge.
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Now we return to I(XS). We will create item transfers ∆. We find it intuitive to describe ∆ via a

flow in the following graph. Starting from G, create a new global source vertex s, and add all (s, v)

edges for all v ∈Cs. Create a new global sink vertex t, and add a (v, t) edge for all v ∈ Sk. Finally,

we let each edge in the graph have infinite capacity. Next, we find a flow of size b from s to t, with

the additional constraints that the flow from s to each v ∈ Cs is the same, and for each C ∈ Sk,

the flow from each v ∈C to t is the same. We show such a flow exists by starting with an arbitrary

flow of size b and constructing such a flow. Let fij be the flow along edge (i, j). For the source

clique, Cs, we can update f ′si = 1
|Cs|

∑
i∈Cs

fsi so that f ′ now satisfies the equal flow constraint for

the source clique. Then, we can always ensure the flow f ′ is balanced by updating the flow between

vertices in Cs: For each i, j ∈Cs, i < j, set f ′ij = fij + 1
|Cs| (fsj − fsi), where negative flows are added

as positive flows in the reverse direction. The flow along all other edges remains the same. To show

that f ′ is a feasible flow, we show flows are balanced for vertices in the source clique. Observe for

an agent i∈Cs:

∑
j∈N∪{s}

f ′ji−
∑
j∈N

f ′ij =
∑
j∈N

fji +
1

|Cs|
∑
j∈Cs

fsj +
1

|Cs|
∑
j∈Cs

(fsi− fsj)−
∑
j∈N

fij =
∑

j∈N∪{s}

fji−
∑
j∈N

fij.

Therefore, if f is a valid flow, so is f ′. An analagous procedure can be applied to the sink cliques.

We use this flow to guide the item transfers, ∆. For each edge with flow, agent i will take

an arbitrary fij worth of items from agent j. The global sink and source vertices are, obviously,

excluded. We choose b small enough such that X + ∆ is feasible. We can assume without loss of

generality that the sum of flows towards any vertex is at most b, as any extra flow must be part of

a cycle and can be eliminated. Then if eS is the budget of agents in S, we can choose any b≤ eS.

In addition, since we ensure the total allocation of an item is preserved and we only transfer items

along indifference edges between agents of the same budget, ∆ is an optimal transfer. Therefore

we can apply Lemma EC.3.

Since there are no item transfers to s, each agent v ∈ Cs with an incoming flow has the same

increased budget. Similarly, for each sink clique C with a positive flow from v ∈C to t, each member

of C will have the same decreased budget.
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Now, if we take each component in the resulting indifference graph, we claim that each agent in

the component will have identical budgets. It is sufficient to show that if e′i 6= e′j, then there will

not be an edge from vi to vj. Since initially everyone in S had the same budget, and item transfers

— as well as “budgets” — go from sinks to sources, if e′i < e
′
j, there was never an edge from vi to

vj to begin with. Now suppose e′i > e
′
j; we have

vi(Xi) =
∑
k∈Xi

vikxik =Cond. EC.3
∑
k∈Xi

ripkxik = rie
′
i > rie

′
j =

∑
k∈Xj

ripkxjk ≥
∑
k∈Xj

vikxjk = vi(Xj),

which implies no (i, j) indifference edge.

Since agents in Cs have a greater budget than all other remaining agents, there will be at least

two components. The final property that we need to prove is that the new allocation does not

violate envy-freeness or add new indifference edges. We break into cases. First, if agents i and j were

indifferent, as we only modify allocations in component S, we only consider when i∈ S, j ∈ S. We

ensure vi(Xi) either stays the same or increases, since we transfer items in the opposite direction

of indifference edges. For similar reasons, vi(Xj) either stays the same or decreases. On the other

hand, if agent i did not envy j we can set b small enough such that i will not envy j in X ′. More

specifically, choose b with simarly to before. However, unlike before, vi(Ai)− vi(Aj) can change

when either i∈ S or j ∈ S, as vi(Ai) changes for some i∈ S. Setting

b <min

{
vi(Ai)− vi(Aj)

2c
: i, j ∈N , i∈ S ∨ j ∈ S,vi(Ai)− vi(Aj)> 0

}

as the budget constraint is sufficient as it ensures that vi(Ai) and vi(Aj) can each change by at

most
vi(Ai)−vi(Aj)

2
. �

Putting everything together.

Proof of Theorem EC.2. Our overall algorithm first solves the E-G convex program with

budgets e where ei = 1 for all i, to find a solution (x=X,p). We keep track of the set of components

S with identical budgets, where initially S = {N}. We alternate between applying the algorithm of

Lemma EC.4 and Lemma EC.5, henceforth procedure 1 and procedure 2. We start by applying the
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former to each S ∈ S. It is possible that after applying procedure 1, edges will be eliminated that

result in S being split into multiple components. In this case, let f(S) be the set of components

formed and update S :=
⋃
S∈S f(S). Note that the clique acylic and identical allocations properties

will still be satisfied by each individual component in S. We then apply procedure 2 to each S ∈ S.

We perform the same update to S, where f(S) is the set of components with identical budgets

found after applying procedure 2. We repeat until applying the two procedures does not decrease

the number of edges in the graph. Finally, we perform the re-balance operation (described in

procedure 1) on each component (or clique, as we will show).

Both procedures do not add edges and reduce the number of edges. There are at most n2 − n

initial edges, and thus the algorithm terminates. In addition, both procedures produce allocations

and budgets where (x′ =A′,p) is a solution to the E-G program for budgets e′.

We now show that X is CISEF. First, X is envy-free by construction. Next, consider the final

graph I(X). We claim that each component is a clique where agents have identical budgets. The

component must be clique-acyclic after procedure 1 is applied. Meanwhile, no edges were removed

by procedure 2 so there could not have been any edges between cliques. Therefore, the component

can only consist of one clique. Next, procedure 2 guarantees that each agent in the clique has the

same budget. Lemma EC.2 tells us that agents will have identical valuations, up to a multiplicative

factor, for items that any agent in the clique receives. The final re-balance operation doesn’t alter

any of the above properties. �

We conclude by discussing the computational complexity of the algorithm. We require an exact

solution to the E-G program, which is obtainable in strongly polynomial time (Orlin 2010). The

edge-elimination steps happen O(n2) times. The only possible issue is the number of bits in the

solution (x,p) and budgets e, as the item transfers described in Lemma EC.4 and EC.5 can both

increase the length (in bits) of x and e. This increase depends primarily on the budget transfers

b. We can always choose b such that b is equal to (vi(Ai)− vi(Aj))/4c for some i, j, where c is

a constant that only depends on the instance and the initial solution to the E-G program. Since
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vi(Ai), vi(Aj) are linear functions of x, their representations are a constant (depending on the vij

and n) larger than the elements of x. In addition, b is an additive constant larger than the bit

length of the min difference vi(Ai)−vi(Aj), so performing the transfer of items under budget b will

also only increase the bit length of the elements of x,e by a constant.

EC.6.2.1. Deriving KKT conditions Here, we derive the KKT conditions in order to show

that they are both necessary and sufficient conditions for optimal solutions to the Eisenberg-Gale

convex program.

We first introduce dual variables p,k for the first and second inequality constraints. From sta-

tionarity, we have:

∇x

n∑
i=1

ei log
m∑
j=1

vijxij =
m∑
j=1

pj∇x

n∑
i=1

xij − 1 +
n∑
i=1

m∑
j=1

−kij∇xxij

For each i, j, we can take the gradient with respect to xij to get:

ei
vij∑m

j=1 vijxij
= pj − kij

vij
pj

=

∑m

j=1 vijxij

ei

(
1− kij

pj

)
(EC.5)

The primal and dual feasbility conditions tell us that: −xij ≤ 0,
∑n

i=1 xij − 1 ≤ 0, pj ≥ 0, and

kij ≥ 0. Finally, complimentary slackness tells us that:

xij > 0 =⇒ kij = 0 and kij > 0 =⇒ xij = 0 (EC.6)

pj > 0 =⇒
n∑
i=1

xij = 1 and
n∑
i=1

xij < 1 =⇒ pj = 0 (EC.7)

KKT condition EC.1 follows from Equation EC.7. Meanwhile, we show that KKT condi-

tions EC.2 and EC.3 are equivalent to the stationarity condition plus the first two complementary

slackness conditions.

Proposition EC.1. For any x,p where pj > 0, KKT conditions EC.2 and EC.3 hold if and only

if there exists k such that Equations EC.5 and EC.6 hold.
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Proof of Proposition EC.1. Consider any x,p.

We first show the forwards direction. We assume that KKT conditions EC.2 and EC.3 hold and

give a k such that Equations EC.5 and EC.6 hold. Take any i∈ [n], j ∈ [m]. We set the value of kij

depending on whether xij > 0. Suppose that xij > 0. Then observe that setting kij = 0 will satisfy

both the stationarity and complementary slackness conditions. Otherwise, xij = 0. In this case, the

slackness conditions trivially hold and we just need to show that there exists a kij ≥ 0 such that

Equation EC.5 holds. From KKT condition EC.2, we have:

vij
pj
/

∑m

j=1 vijxij

ei
≤ 1

Letting c=
vij
pj
/
∑m

j=1 vijxij

ei
, we solve for kij which gives kij = pj(1− c), which is non-negative.

Next, we show the reverse direction. Assume that there exists k such that Equations EC.5

and EC.6 hold. For any i ∈ [n], j ∈ [m], because we have that pj > 0 and kij ≥ 0, this implies that

1− kij
pj
≤ 1. Combine this with Equation EC.5 and we get exactly KKT condition EC.2.

Next, we show that KKT condition EC.3 holds. Assume that xij > 0. Equation EC.6 tells us

that kij = 0. Therefore, 1− kij
pj

= 1 and applying Equation EC.5 tells us that
vij
pj

=
∑m

j=1 vijxij

ei
. �
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