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A
bstract. Participatory budgeting enables the allocation of public funds by collecting and
aggregating individual preferences. It has already had a sizable real-world impact, but
making the most of this new paradigm requires rethinking some of the basics of com-
putational social choice, including the very way in which individuals express their
preferences. We attempt to maximize social welfare by using observed votes as proxies for
voters’ unknown underlying utilities, and analytically compare four preference elicitation
methods: knapsack votes, rankings by value or value for money, and threshold approval
votes. We find that threshold approval voting is qualitatively superior, and also performs
well in experiments using data from real participatory budgeting elections.
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1. Introduction
A central societal question is how to consolidate di-
verse preferences and opinions into reasonable, col-
lective decisions. Classical voting theory takes an
axiomatic approach that identifies desirable proper-
ties that the aggregation method should satisfy, and
studies the (non)existence and structure of such rules.
A celebrated example of this is Arrow’s impossibility
result (Arrow 1951). By contrast, the field of com-
putational social choice (Brandt et al. 2016) typically
attempts to identify an appealing objective function
and design aggregation rules to optimize this objective.

One of the best-studied problems in computational
social choice deals with aggregating individual pref-
erences over alternatives—expressed as rankings—
into a collective choice of a subset of alternatives
(Procaccia et al. 2012, Skowron et al. 2015, Caragiannis
et al. 2016). Nascent social choice applications, though,
havegiven rise to the harder, richer problemof budgeted
social choice (Lu and Boutilier 2011), where alterna-
tives have associated costs, and the selected subset is
subject to a budget constraint.

Our interest in budgeted social choice stems from
the striking real-world impact of the participatory
budgeting paradigm (Cabannes 2004), which allows
local governments to allocate public funds by eliciting
1

and aggregating the preferences of residents over
potential projects. Indeed, in just a few years, the
Participatory Budgeting Project1 has helped allocate
more than $300million of public money formore than
1,600 local projects, primarily in the United States and
Canada (including New York City, Chicago, Boston,
and San Francisco).
Participatory budgeting has also attracted atten-

tion globally. A 2007 study by the World Bank (Shah
2007) reports instances of participatory budgeting in
locations as diverse as Guatemala, Peru, Romania,
and South Africa. In Europe, the push for participa-
tory budgeting is arguably led by Madrid and Paris:
both cities have spent more than 100 million euros
on participatory budgets in 2017 (Gutiérrez 2017,
Legendre et al. 2017). Notably, a participatory bud-
geting application is also included in the Decide
Madrid open-source tool for civic engagement, pro-
viding a framework to simplify the hosting and
management of participatory budgeting elections
around the world.
In the first formal analysis of this paradigm, Goel

et al. (2019)—who have facilitated several partici-
patory budgeting elections as part of the Stanford
Crowdsourced Democracy Team2—propose and eval-
uate two participatory budgeting approaches. In the
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first approach, the input format—theway inwhich each
voter’s preferences are elicited—is knapsack votes:
Each voter reports his or her individual solution to
the knapsack problem, that is, the set of projects that
maximizes the voter’s overall value (assuming an
additive valuation function), subject to the budget
constraint. The second component of the approach is
the aggregation rule; in this case, each voter is seen as
approving all the projects in the individual’s knap-
sack, and then projects are ordered by the number of
approval votes and greedily selected for execution,
until the budget runs out. The second approach uses
value-for-money comparisons as input format. It asks
voters to compare pairs of projects by the ratio be-
tween value and cost. These comparisons are aggre-
gated using variants of classic voting rules, including
the Borda count rule and the Kemeny rule.

In a sense, Goel et al. (2019) take a bottom-up ap-
proach: They define novel, intuitive input formats that
encourage voters to take cost—not just value—into
account, and justify them after the fact. By contrast,
we wish to take a top-down approach, by specifying
an overarching optimization goal, and using it to com-
pare different methods for participatory budgeting.

1.1. Our Approach and Results
Following Goel et al. (2019), we assume that voters
have additive utility functions and vote over a set of
alternatives, each with a known cost. Our goal is to
choose a subset of alternatives that maximizes (util-
itarian) social welfare subject to a budget constraint.

This reduces to a knapsack problem when we have
access to the utility functions; the problem is chal-
lenging precisely because we do not. Rather, we have
access to votes, in a certain input format, which
are consistent with the utility functions. This goal—
maximizing social welfare based on votes that serve
as proxies for latent utility functions—has been stud-
ied formore than a decade (Procaccia and Rosenschein
2006, Caragiannis and Procaccia 2011, Anshelevich
et al. 2015, Boutilier et al. 2015, Anshelevich and Postl
2016, Anshelevich and Sekar 2016), and has recently
been termed implicit utilitarian voting (Caragiannis
et al. 2016).

Absent complete information about the utility func-
tions, clearly social welfare cannot be perfectly max-
imized. Procaccia and Rosenschein (2006) introduced
the notion of distortion to quantify how far a given
aggregation rule is from achieving this goal. Roughly
speaking, given a vote profile (a set of n votes) and an
outcome, the distortion is the worst-case ratio be-
tween the social welfare of the optimal outcome, and
the social welfare of the given outcome, where the
worst case is taken with respect to all utility profiles
that are consistent with the given votes.
Previous work on implicit utilitarian voting assumes
that each voter expresses his preferences by ranking the
alternatives inorder ofdecreasingutility. By contrast, the
main insight underlying our work is that the implicit
utilitarian voting framework allows us to decouple the
input format and aggregation rule, thereby enabling an
analytical comparison of different input formats in terms of
their potential for providing good solutions to the par-
ticipatory budgeting problem.
This decoupling is achieved by associating each input

format with the distortion of the optimal (randomized)
aggregation rule, that is, the rule that minimizes dis-
tortion on every vote profile. Intuitively, the distortion
associatedwithan input formatmeasureshowuseful the
information contained in the votes is for social welfare
maximization (a lower distortion is better).
In Section 3, we apply this approach to compare

four input formats. The first is knapsack votes, which
(disappointingly) has distortion linear in the number
of alternatives, the same distortion that one can
achieve in the complete absence of information. Next,
we analyze two closely related input formats: rank-
ings by value and rankings by value formoney, which
ask voters to rank the alternatives by their value and
by the ratio of their value and cost, respectively. We
find that for both of these input formats, the distortion
grows no faster than the square root of the number of
alternatives, which matches a lower bound up to
logarithmic factors. Finally, we examine a novel input
format, which we call threshold approval votes: each
voter is asked to approve the alternatives the voter
values above a threshold thatwe choose.We find tight
bounds showing that the distortion of threshold
approval votes is essentially logarithmic in the num-
ber of items. To summarize, our theoretical results
show striking separations between different input
formats, with threshold approval votes coming out
well on top.
These results may also be interpreted as approxi-

mation ratios to the optimal solution of the classical
knapsack problem, where we are given only partial
information about voter utilities (a vote profile, in
some format) and an adversary selects both the vote
profile and a utility profile consistent with the votes,
which are used to evaluate our performance.
Although our theoretical results in Section 3 bound

the distortion, that is, the worst-case ratio of the
optimal social welfare to the social welfare achieved
over all instances, it may be possible to provide much
stronger performance guarantees on any specific in-
stance. In Section 4, we design algorithms to compute
the distortion-minimizing subset of alternatives (when
considering deterministic aggregation rules), and dis-
tribution over subsets of alternatives (when considering
randomized aggregation rules) for a specific instance.
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In Section 5, we use these algorithms to evaluate the
average-case ratio of the optimal social welfare to the
social welfare achieved by various aggregation rules.
Specifically, we compare the distortion-minimizing
aggregation rule for each of the four formats we study
to two approaches currently used in practice. (Note
that a distortion-minimizing rule finds the subset of
alternatives that is best in the worst case over all
utility profiles that could have induced the observed
vote profile. There is no guarantee that this subset
maximizes social welfare for the actual underlying
utility profile that induced the vote profile. None-
theless, we find distortion-minimizing rules perform
extremely well.) We use data from two real-world
participatory budgeting elections held in Boston in
2015 and 2016. The experiments indicate that ag-
gregation rules that minimize distortion on every
input profile significantly outperform the currently
deployed approaches, and among the input formats
we study, threshold approval votes remain superior,
even in practice. We also observe that the running
times of these distortion-minimizing rules scale grace-
fully to practical sizes.

Our results emphasize that the choice of input
format should be an important consideration when
setting up a participatory budgeting framework. We
observe that greedy aggregation rules, which are the
current norm, can lead to inefficient outcomes. We
also find compelling evidence against using knapsack
votes in their poor theoretical guarantees and weaker
empirical performance. Beyond these general obser-
vations, we expect the idiosyncrasies of every indi-
vidual city to guide its implementation of partici-
patory budgeting. For example, one set of city officials
revealed that they used knapsack votes specifically so
that voters experience the constraints that come with
having a limited budget.

1.2. Related Work
Let us first describe the theoretical results of Goel
et al. (2019) in slightly greater detail. Most relevant to
our work is a theorem that asserts that knapsack
voting (i.e., knapsack votes as the input format, coupled
with greedy approval-based aggregation) actually max-
imizes social welfare. However, the result strongly relies
on their overlap utilitymodel, where the utility of a voter
for a subset of alternatives is (roughly speaking) the size
of the intersection between this subset and the voter’s
own knapsack vote. In a sense, the viewpoint un-
derlying thismodel is the opposite of ours, as a voter’s
utility is derived from the individual’s vote, instead of
the other way around. One criticism of this model is
that even if certain alternatives do not fit into a voter’s
individual knapsack solution due to the budget con-
straint, the voter could (and usually will) have some
utility for them. Goel et al. (2019) also provide
strategyproofness results for knapsack voting, which
similarly rely on the overlap utility model. Finally,
they interpret their methods as maximum likelihood
estimators (Young 1988, Conitzer and Sandholm 2005)
under certain noise models.
As our work applies the implicit utilitarian voting

approach (Boutilier et al. 2015, Caragiannis et al.
2016) to a problem in the budgeted social choice
framework (Lu and Boutilier 2011), it is naturally
related to both lines of work. Lu and Boutilier (2011)
introduce the budgeted social choice framework,
in which the goal is to collectively select a set of al-
ternatives subject to a budget constraint. Their frame-
work generalizes the participatory budgeting prob-
lem studied herein as it allows the cost of an
alternative to also depend on the number of voters who
derive utility from the alternative. However, their re-
sults are incomparable to ours because they assume that
every voter’s utility for an alternative is determined
solely by the rank of the alternative in the voter’s
preference order—specifically, that the utilities of all
voters follow a common underlying positional scor-
ing rule—which is a common assumption in the lit-
erature on resource allocation (Bouveret and Lang
2011, Baumeister et al. 2017). This makes the elicita-
tion problem trivial because eliciting ordinal prefer-
ences (i.e., rankings by value) is assumed to accurately
reveal the underlying cardinal utilities. By contrast,
we do not impose such a restriction on the utilities,
and compare the rankings-by-value input format
with three other input formats.
Previouswork on implicit utilitarian voting focuses

exclusively on the rankings-by-value input format.
Boutilier et al. (2015) study the problem of selecting a
single winning alternative, and provide an upper and
lower bound on the distortion achieved by the opti-
mal aggregation rule. Their setting is a special case of
the participatory budgeting problem where the cost
of each alternative equals the entire budget. Conse-
quently, their lower bound applies to our more gen-
eral setting, and our upper bound for the rankings-
by-value input format generalizes theirs (up to a
logarithmic factor). Caragiannis et al. (2016) extend
the results of Boutilier et al. (2015) to the case where
a subset of alternatives of a given size k is to be se-
lected (only for the rankings-by-value input format);
this is again a special case of the participatory budg-
eting problem where the cost of each alternative
is B/k. However, our results are incomparable to
theirs because we assume additive utility functions—
following previous work on participatory budgeting
(Goel et al. 2019)—whereas Caragiannis et al. (2016)
assume that a voter’s utility for a subset of alterna-
tives is the voter’s maximum utility for any alterna-
tive in the subset.



Benadè et al.: Preference Elicitation for Participatory Budgeting
4 Management Science, Articles in Advance, pp. 1–15, © 2020 INFORMS
The core idea behind implicit utilitarian voting—
approximating utilitarian social welfare given ordi-
nal information—has also been studied inmechanism
design. Filos-Ratsikas et al. (2014) and Anshelevich
and Sekar (2016) present algorithms for finding mat-
chings inweighted graphs given ordinal comparisons
among the edges by their weight, and Abramowitz
and Anshelevich (2018) generalize this to a class of
utility maximization problems on graphs, including
the maximum weight spanning tree, maximum weight
b-matching, and maximum traveling salesperson prob-
lems. Krysta et al. (2014) study distortion in the house
allocation problem and Chakrabarty and Swamy
(2014) consider it in a general mechanism design
setting, but with the restriction borrowed from Lu
and Boutilier (2011) that the utilities of all agents are
determined by a common positional scoring rule.

A line of research on resource allocation focuses on
maximizing other forms of welfare such as the egal-
itarian welfare or the Nash welfare (see, e.g., Moulin
2003). Maximizing the Nash welfare has the benefit
that it is invariant to scaling an agent’s utility func-
tion, and thus does not require normalizing the util-
ities. In addition, it is known to satisfy nontrivial
fairness guarantees in domains that are similar to or
generalize participatory budgeting (Conitzer et al.
2017, Fain et al. 2018). It remains to be seen whether
maximizing the Nash welfare subject to votes that only
partially reveal the underlying utilities can preserve
such guarantees.

2. The Model
Let [k] � {1, . . . , k} denote the set of k smallest positive
integers. Let N � [n] be the set of voters, and A be the
set of m alternatives. The cost of alternative a is
denoted ca, and the budget B is normalized to 1. For
S ⊆ A, let c(S) � ∑

a∈S ca. Define ^c � {S ⊆ A : c(S) ≤
1 ∧ c(T) > 1, ∀S ⊊ T ⊆ A} as the inclusion-maximal
budget-feasible subsets of A.

We assume that each voter has a utility function
vi : A → R+ ∪ {0}, where vi(a) is the utility that voter i
has for alternative a, and that these utilities are ad-
ditive, that is, the utility of voter i for a set S ⊆ A is
defined as vi(S) � ∑

a∈S vi(a). Finally, to ensure fairness
among voters, we make the standard assumption
(Caragiannis and Procaccia 2011, Boutilier et al. 2015)
that vi(A) � 1 for all voters i ∈ N. We note that alter-
native normalizations exist. For example, we may
assume 0 ≤ vi(a) ≤ 1 for all a ∈ A as Filos-Ratsikas and
Miltersen (2014) do; however, we do not see a com-
pelling reason to prefer this assumption. We call the
vector �v � {v1, . . . , vn} of voter utility functions the
utility profile.

Given the utility profile, the (utilitarian) social
welfare of an alternative a ∈ A is defined as sw(a, �v ) �∑

i∈N vi(a); for a set S ⊆ A, let sw(S, �v ) � ∑
a∈S sw(a, �v ). If
voter utilities were known, our objective would be
to return S ∈ argmaxX∈^c

sw(X), that is, the budget-
feasible set of alternatives that maximizes social
welfare. Observe that our unit-sum normalization
implies that we are effectively maximizing normal-
ized social welfare (Aziz 2019).
Unfortunately, the utility function of a voter i is

only accessible through the individual’s vote ρi, which
is induced by vi. The vector �ρ � {ρ1, . . . , ρn} is called
the input profile. Let �v 8 �ρ denote that utility profile
�v is consistent with input profile �ρ. We study four
specific formats for input votes. In the following, we
describe each input format along with a sample
question that may be asked to the voters to elicit votes
in that format. The voters can be induced to think of
their utilities for the different alternatives (i.e., projects)
in a normalized fashion by asking them to (mentally)
divide a constant sum of points—say, 1,000 points—
among the alternatives based on how much they like
each alternative.
• The knapsack vote κi ⊆ A of voter i ∈ N represents

a feasible subset of alternatives with the highest value
for the voter. We have vi8κi if and only if c(κi) ≤ 1
and vi(κi) ≥ vi(S) for all S ∈ ^c. If the total budget is
$100,000, the voters may be asked: “Select the best set
of projects according to you subject to a total budget
of $100,000.”
• The rankings-by-value and the rankings-by-value-

for-money input formats ask voter i ∈ N to rank the
alternatives by decreasing value for the voter, and by
decreasing ratio of value for the voter to cost, re-
spectively. Formally, let + � +(A) denote the set of
rankings over the alternatives. For a ranking σ ∈ +, let
σ(a)denote the position of alternative a in σ, and a �σ b
denote σ(a) < σ(b), that is, that a is preferred to b un-
der σ. Then, we say that utility function vi is consistent
with the ranking by value (respectively, value for
money) of voter i ∈ N, denoted σi, if and only if vi(a) ≥
vi(b) (respectively, vi(a)/ca ≥ vi(b)/cb) for all a �σi b. To
elicit such votes, the voters may be asked: “If you had
to divide 1,000 points among the projects based on
how much you like them, rank the projects in the
decreasing order of the number of points they would
receive (divided by the cost).”
• For a threshold t, the threshold approval vote τi of

voter i ∈ N consists of the set of alternatives whose
value for the voter is at least t, that is, vi8τi if and only
if τi � {a ∈ A : vi(a) ≥ t}. To elicit threshold approval
votes with a threshold t � 1/10, the voters may be
asked: “If you had to divide 1,000 points among the
projects based on how much you like them, select all
the projects that would receive at least 100 points.”
Due to our normalization, we are effectively asking
voterswhether their utility for an alternative is at least
some fraction of their total utility, making this input
format scale-invariant like the others.
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In our setting, a (randomized) aggregation rule f for
an input formatmaps each input profile �ρ in that format
to a distribution over^c. The rule is deterministic if it
returns a particular set in ^c with probability 1.

In the implicit utilitarianism framework, the ulti-
mate goal is to maximize the (utilitarian) social welfare.
Procaccia and Rosenschein (2006) use the notion of
distortion to quantify how far an aggregation rule f is
from achieving this goal. The distortion of f on a vote
profile �ρ is given by

dist f , �ρ
( ) � sup

�v :�v8�ρ

maxT∈^c sw T, �v
( )

E sw f �ρ
( )

, �v
( )[ ] .

The (overall) distortion of a rule f is given by dist( f ) �
max�ρ dist( f , �ρ). The optimal (randomized) aggrega-
tion rule f ∗, which we term the distortion-minimizing
aggregation rule, selects the distribution minimizing
distortion on each input profile individually, that is,

f ∗ �ρ
( ) � argmin

p∈Δ ^c( )
sup
�v :�v8�ρ

maxT∈^c sw T, �v
( )

E sw p, �v
( )[ ] ,

where Δ(^c) is the set of distributions over ^c.
Needless to say, f ∗ achieves the best possible over-
all distortion. Similarly, the deterministic distortion-
minimizing aggregation rule f ∗det is given by

f ∗det �ρ
( ) � argmin

S∈^c

sup
�v :�v8�ρ

maxT∈^c sw T, �v
( )

sw S, �v
( ) .

Finally, we say that the distortion associated with an
input format (i.e., elicitation method) is the overall
distortion of the (randomized) distortion-minimizing
aggregation rule for that format; this, in a sense,
quantifies the effectiveness of the input format in
achieving social welfare maximization. In a setting
where deterministic rules must be used, we say that
the distortion associated with deterministic aggre-
gation of votes in an input format is the overall dis-
tortion of the deterministic distortion-minimizing
aggregation rule for that format. Observe that we
always mention deterministic aggregation explicitly,
and the distortion associated with an input format
allows randomized aggregation by default.

3. Theoretical Results
In Section 3.1, we present theoretical results for the
distortion associated with different input formats
when no constraints are imposed on the aggregation
rule, that is, when randomized aggregation rules are
allowed. Subsequently, in Section 3.2, we study the
distortion associated with deterministic aggregation
under these input formats.
3.1. Randomized Aggregation Rules
We begin by making a simple observation that holds
for (randomized) aggregation of votes in any in-
put format.

Observation 1. The distortion associated with any in-
put format is at most m.

Proof of Observation 1. Consider the rule that selects a
single alternative uniformly at random; this is clearly
budget-feasible. Due to the normalization of utility
functions, the expected welfare achieved by this rule
is (1/m) ·∑i∈N

∑
a∈A vi(a) � n/m. On the other hand, the

maximum welfare that any subset of alternatives can
achieve is at most n. Hence, the distortion of this rule,
which does not require any input, is at most m. □

3.1.1. Knapsack Votes. We now present our analysis
for knapsack votes—an input format advocated by
Goel et al. (2019).

Theorem 2. For n ≥ m, the distortion associated with
knapsack votes is Ω(m).
Proof of Theorem 2. Consider the case where every
alternative has cost 1 (i.e., equal to the budget). Con-
sider the input profile �κ, in which voters are partitioned
into m subsets {Na}a∈A of roughly equal size; specifi-
cally, let na � |Na| and enforce n/m� ≤ na ≤ �n/m� for
all a ∈ A. For every a ∈ A and i ∈ Na, let κi � {a}.
Consider a randomized aggregation rule f . There

must exist an alternative a∗ ∈ A such that Pr[f (�κ) �
{a∗}] ≤ 1/m. Now, construct a utility profile �v such
that i) for all i ∈ Na∗ , we have vi(a∗) � 1, and vi(a) � 0
for a ∈ A \ {a∗}; and ii) for all a ∈ A \ {a∗} and i ∈ Na, we
have vi(a) � vi(a∗) � 1/2, and vi(b) � 0 for b ∈ A \ {a, a∗}.
Note that �v is consistent with the input profile �κ,

that is, �v8�κ. Moreover, it holds that sw(a∗, �v ) ≥ n/2,
whereas sw(a,�v ) ≤na ≤n/m+1 for a ∈ A \ {a∗}. It fol-
lows that

dist f
( ) ≥ dist f , �κ

( ) ≥ n/2
1
m · n + m−1

m · n
m + 1
( ) ≥ m

6
,

as desired. □

In light of Observation 1, this result indicates that
the distortion associated with knapsack votes is as-
ymptotically indistinguishable from the distortion
one can achieve with absolutely no information
about voter preferences, suggesting that knapsack
votes may not be an appropriate input format if
the goal is to maximize social welfare. Our aim now
is to find input formats that achieve better results
when viewed through the implicit utilitarian-
ism lens.
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3.1.2. Rankings by Value and by Value for Money. Goel
et al. (2019) also advocate the use of comparisons
between alternatives based on value for money, which,
like knapsack votes, encourage voters to consider the
trade-off between value and cost. We study rankings by
value for money as an input format; observe that such
rankings conveymore information thanspecificpairwise
comparisons.

In addition, we study rankings by value, which
are prevalent in the existing literature on implicit
utilitarian voting (Procaccia and Rosenschein 2006,
Caragiannis and Procaccia 2011, Anshelevich et al.
2015, Boutilier et al. 2015, Anshelevich and Postl 2016,
Anshelevich and Sekar 2016). Rankings by value
convey more information than k-approval votes, in
which each voter submits the set of top k alternatives
by their value—this is the input format of choice for
most real-world participatory budgeting elections
(Goel et al. 2019).

Boutilier et al. (2015) prove a lower bound ofΩ( ̅̅̅
m

√ )
on distortion in the special case of our setting where
all alternatives have cost 1, the input format is rank-
ings by value, and n ≥ ̅̅̅

m
√

. This result carries over to
our more general setting, not only with rankings by
value, but also with rankings by value for money, as
both input formats coincide in case of equal costs. Our
goal is to establish an almost matching upper bound.

We start from a mechanism of Boutilier et al. (2015)
that has distortion 2( ̅̅̅̅̅̅̅̅̅̅̅

m logm
√ ) in their setting. It

carefully balances between high-value and low-value
alternatives (where value is approximately inferred
from the positions of the alternatives in the input
rankings). In our more general participatory budg-
eting problem, it is crucial to also take into account the
costs, and find the perfect balance between selecting
many low-cost alternatives and fewer high-cost ones.
We modify the mechanism of Boutilier et al. precisely
to achieve this goal. Specifically, we partition the
alternatives into 2(logm) buckets based on their costs,
and differentiate between alternatives within a bucket
based on their (inferred) value. Ourmechanism for rank-
ings by value for money requires more careful treatment
as values are obfuscated in value-for-money comparisons.

At first glance, our setting seems much more dif-
ficult, distortion-wise, than the simple setting of
Boutilier et al. (2015). But ultimately, we obtain only a
slightly weaker upper bound on the distortion as-
sociated with both rankings by value and by value for
money. In other words, to our surprise, incorporating
costs and a budget constraint comes at almost no cost
(no pun intended) to social welfare maximization.

Theorem 3. The distortion associated with rankings by
value and rankings by value for money is 2( ̅̅̅

m
√

logm).
Proof of Theorem 3. We first present the proof for
rankings by value for money as it is trickier, and later
describe how an almost identical proof works for
rankings by value.
Let us begin by introducing additional notation.

For a ranking σ and an alternative a ∈ A, let σ(a) denote
the position of a in σ. For a preference profile �σ with n
votes, let the harmonic score of a in �σ be defined as
sc(a, �σ) � ∑n

j�1 1/σj(a). Finally, given a set of alternatives
S ⊆ A, let σ|S (respectively, �σ|S) denote the ranking
(respectively, preference profile) obtained by restrict-
ing σ (respectively, �σ) to the alternatives in S.
For ease of exposition assumem is a power of 2. Let �σ

denote the input profile consisting of voter preferences
in the form of rankings by value for money. Let �v
denote the underlying utility profile consistent with �σ.
Let S∗ � argmaxS∈^c

sw(S, �v ) be the budget-feasible set
of alternatives maximizing the social welfare.
Define �0 � 0 and u0 � 1/m. For i ∈ [logm], define

�i � 2i−1/m and ui � 2i/m. Let us partition the alter-
natives into logm + 1 buckets based on their costs: S0 �
{a∈A : ca ≤ u0} and Si � {a∈A : �i < ca ≤ ui} for i ∈ [logm].
Note that for i ∈ {0} ∪ [logm], selecting at most 1/ui al-
ternatives from Si is guaranteed to be budget-feasible.
Next, let us further partition the buckets into two

parts: for i ∈ {0} ∪ [logm], let S+i consist of the
̅̅̅
m

√ ·
(1/ui) alternatives from Si with the largest harmonic
scores in the reduced profile �σ|Si , and S−i � Si \ S+i . If
|Si| ≤ ̅̅̅

m
√ · (1/ui), we let S+i � Si and S−i � ∅. Note that

S+0 � S0. Let S+ � ∪logm
i�0 S+i and S− � A \ S+.

We are now ready to define our randomized ag-
gregation rule, which randomizes over two sepa-
rate mechanisms:
• Mechanism A: Select a bucket Si uniformly at

random, and select a (1/ui)-size subset of S+i uniformly
at random.
• Mechanism B: Select a single alternative uni-

formly at random.
Our aggregation rule executes each mechanism with

an equal probability 1/2. We now show that this rule
achieves distortion that is 2( ̅̅̅

m
√

logm).
First, note that mechanism A selects each bucket Si

with probability 1/(logm + 1), and when Si is selected,
it selects each alternative in S+i with probability at least
1/

̅̅̅
m

√
. (This is because the mechanism selects 1/ui al-

ternatives at random from S+i , which has at most
̅̅̅
m

√ ·
(1/ui) alternatives.) Hence, the mechanism selects each
alternative in S+ (and therefore, each alternative in
S∗ ∩ S+) with probability at least 1/( ̅̅̅

m
√ (logm + 1)). In

other words, the expected social welfare achieved
under mechanism A is 2( ̅̅̅

m
√

logm) approximation
of sw(S∗ ∩ S+, �v ).
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Finally, to complete the proof, we show that the
expected welfare achieved under mechanism B is an
2( ̅̅̅

m
√

logm) approximation of sw(S∗ ∩ S−, �v ). Let us
first bound sw(S∗ ∩ S−, �v ). Recall that S−0 � ∅. Hence,

sw S∗ ∩ S−, �v
( )

� ∑logm
i�1

sw S∗ ∩ S−i , �v
( )

.

Fix i ∈ [logm] and a ∈ S−i . One can easily check that∑
b∈Si

sc b, �σ|Si
( ) � n ·H|Si | ≤ n ·Hm,

where Hk is the kth harmonic number. Because S+i
consists of the

̅̅̅
m

√
/ui alternatives in Si with the largest

harmonic scores, we have

sc a, �σ|Si
( ) ≤ n ·Hm̅̅̅

m
√ · 1/ui( ) �

n · 1 + logm
( )
̅̅̅
m

√ ·m/2i
. (1)

Next, we connect this bound on the harmonic score of
a to a bound on its social welfare. For simplicity, let us
denote �γ≜ �σ|Si . Due to our definition of the partitions,
we have

ca ≤ 2 · cb,∀b ∈ Si. (2)
Further, fix a voter j ∈ [n]. For each alternative b such
that b �γj a, we also have vj(b)/cb ≥ vj(a)/ca. Substitut-
ing Equation (2), we get

vj a( ) ≤ 2vj b( ),∀j ∈ n[ ], b ∈ Si s.t. b �γj a. (3)
Taking a sum over all b ∈ Si with b �γj a, and using the
fact that the values of each voter j sum to 1, we get
vj(a) ≤ 2/γj(a) for j ∈ [n], and taking a further sumover
j ∈ [n], we get

sw a, �v
( ) ≤ 2 · sc a, �σ|Si

( )
. (4)

Combining this with Equation (1), we get

sw a, �v
( ) ≤ 2 · n · 1 + logm

( )
̅̅̅
m

√ ·m/2i
,∀a ∈ S−i .

Note that S∗ can contain at most 2/ui � m/2i−1 alter-
natives from Si while respecting the budget con-
straint. Hence,

sw S∗ ∩ S−, �v
( ) � ∑logm

i�1
sw S∗ ∩ S−i , �v

( )

≤ m/2i−1
( ) · 2 · n · 1 + logm

( )
̅̅̅
m

√ ·m/2i

� 4 · n · 1 + logm
( )

/
̅̅̅
m

√
.

(5)

Because the utilities sum to 1 for each voter, the ex-
pected social welfare achieved under mechanism B is
(1/m) ·∑i∈N

∑
a∈A vi(a) � n/m, which is an 2( ̅̅̅

m
√

logm)
approximation of sw(S∗ ∩ S−, �v ) due to Equation (5).
This completes the proof of 2( ̅̅̅
m

√
logm) distortion

associatedwith rankings by value formoney. The proof
for rankings by value is almost identical. In fact, one can
make two simplifications.
First, the factor of 2 from Equation (3), and therefore

from Equation (4) disappears because the rankings
already dictate comparison by value. This leads to an
improvement in Equation (5) by a factor of 2.
Second, Equation (3) not only holds for b ∈ Si such

that b �γj a, but also holds more generally for b ∈ A
such that b �σj a. Hence, there is no longer a need to
compute the harmonic scores on the restricted pro-
file �σ|Si ; one can simply work with the original input
profile �σ. □

3.1.3. Threshold Approval Votes. Approval voting—
where voters can choose to approve any subset of
alternatives, and a most widely approved alterna-
tive wins—is well studied in social choice theory
(Brams and Fishburn 2007). In our utilitarian setting,
we reinterpret this input format as threshold ap-
proval votes, where the principal sets a threshold t,
and each voter i ∈ N approves every alternative a for
which vi(a) ≥ t.
We first investigate deterministic threshold ap-

proval votes, in which the threshold is selected de-
terministically, but find that it does not help us
(significantly) improve over the distortion we can
already obtain using rankings by value or by value for
money. Specifically, for a fixed threshold, we are
always able to construct cases in which alternatives
have significantly different welfares, but either no
alternative is approved or an extremely large set of
alternatives is approved, providing the rule little
information to distinguish between the alternatives,
and yielding high distortion.

Theorem 4. The distortion associated with deterministic
threshold approval votes is Ω( ̅̅̅

m
√ ).

Proof of Theorem 4. Imagine the case where ca � 1 for
all alternatives a ∈ A. Recall that the budget is 1. Let f
denote a randomized aggregation rule. (Although we
study deterministic and randomized threshold selec-
tion, we still allow randomized aggregation rules.
Section 3.2 studies the case where the aggregation rule
has to be deterministic.) It must return a single alter-
native, possibly chosen in a randomized fashion. We
construct our adversarial input profile based onwhether
t ≤ 1/

̅̅̅
m

√
. Let A � {a1, . . . , am}.

Suppose t ≤ 1/
̅̅̅
m

√
. Fix a set of alternatives S ⊆ A

such that |S| � ̅̅̅
m

√
/2 + 1 (assume for ease of exposition̅̅̅

m
√

is an even integer). Construct the input profile �τ
such that τi � S for all i ∈ N. Now, theremust exist a∗ ∈ S
such that Pr[ f (�τ ) � {a∗}] ≤ 1/( ̅̅̅

m
√

/2 + 1). Construct
the underlying utility profile �v such that for each voter
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i ∈ N, vi(a∗) � 1/2, vi(a) � 1/
̅̅̅
m

√
for a ∈ S \ {a∗}, and

vi(a) � 0 for a ∈ A \ S. Note that this is consistent with
the input profile given that t≤ 1/

̅̅̅
m

√
. Further, sw(a∗, �v ) �

n/2 whereas sw(a, �v ) ≤ n/
̅̅̅
m

√
for all a ∈ A \ {a∗}. Hence,

E sw f �τ( ), �v( )[ ] ≤ 1̅̅̅
m

√
/2 + 1

· n
2
+

̅̅̅
m

√
/2̅̅̅

m
√

/2 + 1
· n̅̅̅

m
√

� 2
n̅̅̅
m

√
( )

.

Because the optimal social welfare is Θ(n), we have
that dist( f ) � Ω( ̅̅̅

m
√ ), as required.

Now suppose that t > 1/
̅̅̅
m

√
. Construct an input

profile �τ in which τi � ∅ for every voter i ∈ N. In this
case, there exists an alternative a∗ ∈ A such that
Pr[f (�τ) � a∗] ≤ 1/m. Let us construct the underlying
utility profile �v as follows. For every voter i ∈ N,
let vi(a∗) � 1/

̅̅̅
m

√
, and vi(a) � (1 − 1/

̅̅̅
m

√ )/m for all
a ∈ A \ {a∗}. Note that this is consistent with the in-
put profile given that t > 1/

̅̅̅
m

√
. Clearly, the optimal

social welfare is achieved by sw(a∗, �v ) � n/
̅̅̅
m

√
. In

contrast, we have

E sw f �τ( ), �v( )[ ] ≤ 1
m
· n̅̅̅

m
√ + 1 − 1̅̅̅

m
√

( )
· 1 − 1/

̅̅̅
m

√
m

� 2
n
m

( )
.

Hence, we again have dist( f ) � Ω( ̅̅̅
m

√ ), as desired. □

For specific ranges of the threshold, it is possible to
derive stronger lower bounds. However, the Ω( ̅̅̅

m
√ )

lower bound of Theorem 4 is sufficient to establish a
clear asymptotic separation between the power of
deterministic and randomized threshold approval votes.

Under randomized threshold approval votes, we
can select the threshold in a randomized fashion.
Technically, this is a distribution over input formats,
one for each value of the threshold. Before we define
the (overall) distortion of a rule that randomizes over
input formats, let us recall the definition of the overall
distortion of a rule for a fixed input format:

dist f
( ) � max

�ρ
sup
�v :�v8�ρ

maxT∈^c sw T, �v
( )

E sw f �ρ
( )

, �v
( )[ ]

� sup
�v

maxT∈^c sw T, �v
( )

E sw f �ρ
( )

, �v
( )[ ] .

Here, �ρ(�v )denotes the input profile induced by utility
profile �v . In the case of randomized threshold ap-
proval votes, rule f specifies a distribution D over the
threshold t, as well as the aggregation of input profile
�ρ(�v , t) induced by utility profile �v and a given choice
of threshold t. We define the (overall) distortion of
rule f as

dist f
( ) � sup

�v
Et∼D

maxT∈^c sw T, �v
( )

E sw f �ρ �v , t
( )( )

, �v
( )[ ] .
Interestingly, observe that due to the expectation over
threshold t, which affects the induced input profile
�ρ(�v , t), we can no longer decompose the maximum
over �v into a maximum over �ρ followed by a maxi-
mum over �v such that �v8�ρ, in contrast to the case of a
fixed input format.
This flexibility of randomizing the threshold value

allows us to dramatically reduce the distortion.

Theorem 5. The distortion associated with randomized
threshold approval votes is 2(log2 m).
Proof of Theorem 5. For ease of exposition, assume m
is a power of 2. Let I0 � [0, 1/m2], and Ij � (2j−1/m2,
2j/m2], �j � 2j−1/m2, and uj � 2j/m2 for j� 1, . . . , 2logm.
Let �v denote a utility profile that is consistent with

the input profile. For a ∈ A and j ∈ {0, . . . , 2 logm},
define naj � |{i ∈ N : vi(a) ∈ Ij}| to be the number of
voters whose utility for a falls in the interval Ij. We now
bound the social welfare of a in terms of the numbers naj .
Specifically,

sw a, �v
( ) � ∑

i∈N
vi a( ) ≤ ∑2 logm

j�0

∑
i∈N

I vi a( ) ∈ Ij
{ } · uj

� ∑2 logm
j�0

naj · uj,

where I indicates the indicator variable. A similar
argument also yields a lower bound, andafter substituting
�0 � 0, u0 � 1/m2, and na0 ≤ n, we get

∑2 logm
j�1

naj · �j ≤ sw a, �v
( ) ≤ n

m2 +
∑2 logm
j�1

naj · uj. (6)

Next, divide the alternatives into 1 + 2 logm buckets
based on their costs, with bucket Sj � {a ∈ A : ca ∈ Ij}.
Note that selecting at most 1/uj alternatives from Sj is
guaranteed to satisfy the budget constraint.
Let S∗ � argmaxS∈^c

sw(S, �v ) be the feasible set of
alternatives maximizing the social welfare. For j, k ∈
{0, . . . , 2 logm}, let n∗j,k � ∑

a∈S∗∩Sk naj denote the number
of voters whose utility for an alternative falls in in-
terval Ij, summed over the alternatives that appear
in both S∗ and Sk. Using Equation (6), we have

∑2logm
j�1

n∗j,k · �j ≤ sw S∗ ∩Sk,�v
( )

≤ |S∗ ∩Sk | · nm2+
∑2logm
j�1

n∗j,k ·uj. (7)

We now construct three different mechanisms; our
final mechanism will randomize between them:
Mechanism A: Pick a pair (j, k) uniformly at random

from the set T � {(j, k) : j, k ∈ [2 logm]}. Then, set the
threshold to �j, and using the resulting input profile,
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greedily select the 1/uk alternatives from Sk with the
largest number of approval votes (or select Sk if
|Sk | ≤ 1/uk). Let Bj,k denote the set of selected alter-
natives for the pair (j, k). Because we have j > 0
and k > 0,

sw Bj,k, �v
( ) ≥ ∑

a∈Bj,k

∑2 logm
p�j

nap

( )
· �j

≥ 1
4
· ∑2 logm

p�j
n∗p,k

( )
· uj ≥ 1

4
· n∗j,k · uj, (8)

where, in the first transition, we bound the welfare
from below by only considering utilities that are at
least �j, and the second transition holds because
uj � 2�j, |S∗ ∩ Sk | ≤ 2|Bj,k |, and Bj,k consists of greedily
selected alternatives with the highest number of ap-
proval votes. Thus, the expected social welfare achieved
by mechanism A is

1

2 logm
( )2 ∑2 logm

j�1

∑2 logm
k�1

sw Bj,k, �v
( )

≥ 1

4 · 2 logm
( )2 ∑2 logm

j�1

∑2 logm
k�1

n∗j,k · uj

≥ 1
16 log2 m

sw S∗ \ S0, �v( ) − |S∗ \ S0| · n
m2

( )

≥ 1
16 log2 m

sw S∗ \ S0, �v( ) − n
m

( )
,

where the first transition follows from Equation (8),
and the second transition follows from Equation (7).

Mechanism B: Select all the alternatives in S0. Be-
cause each alternative in S0 has cost at most 1/m2, this
is clearly budget-feasible. The social welfare achieved
by this mechanism is sw(S0, �v ) ≥ sw(S∗ ∩ S0, �v ).

Mechanism C: Select a single alternative uniformly
at random from A. This is also budget-feasible, and
due to normalization of values, its expected social
welfare is n/m.

Our final mechanism executes mechanism A with
probability 16 log2 m/(2 + 16 log2 m), and mechanisms
B andCwith probability 1/(2 + 16 log2 m) each. It is easy
to see that its expected social welfare is at least sw(S∗,�v)/
(2+16log2m). Hence, its distortion is 2(log2m). □

We also show that at least logarithmic distortion is
inevitable even when using randomized threshold
approval votes.

Theorem 6. The distortion associated with randomized
threshold approval votes is Ω(logm/ log logm).
Proof of Theorem 6. Imagine the case where ca � 1 for
all a ∈ A. Recall that the budget is 1. Let f denote a rule
that elicits randomized threshold approval votes and
aggregates them to return a distribution over A (as
only a single project can be executed at a time). Note
that f is not simply the aggregation rule, but the elic-
itation method and the aggregation rule combined.
Divide the interval (1/m, 1] into �logm/ log (2 logm)�

subintervals: For j ∈ [�logm/ log (2 logm)�], let

Ij � 2 logm
( )j−1

m
,min

2 logm
( )j

m
, 1

{ }( ]
,

note that the minimum in the upper bound only af-
fects the last interval. Let uj and �j denote the upper
and lower end points of Ij and observe that uj ≤
2 logm · �j for all j ∈ [�logm/ log (2 logm)�].
Let t denote the threshold picked by f (in a ran-

domized fashion). There must exist k ∈ [�logm/
log (2 logm)�] such that Pr[t ∈ Ik] ≤ log (2 logm)/ logm.
Fix a subset S ⊆ A of size logm, and let V � uk/2 +
(logm−1) · �k. Construct a (partial) utility profile �v such
that for eachvoter i ∈ N, vi(a) ∈ Ik for a ∈ S,

∑
a∈S vi(a) � V,

and vi(a) � (1 − V)/(m − logm) for a ∈ A \ S. First, this
is feasible because

V � uk
2
+ logm − 1
( ) · �k ≤ 1

2
+ logm − 1

2 logm
≤ 1.

Second, this partial description completely dictates
the induced input profile when t /∈ Ik. Because f can
only distinguish between alternatives in Swhen t ∈ Ik,
there must exist a∗ ∈ S such that Pr[ f returns a∗|
t /∈ Ik] ≤ 1/ logm. Suppose the underlying utility profile
�v satisfies, for each voter i ∈ N, vi(a∗) � uk/2 and
vi(a) � �k for a ∈ S \ {a∗}. Observe that this is consistent
with the partial description provided before.
In this case, the optimal social welfare is given

by sw(a∗, �v ) � n · uk/2, whereas sw(a, �v ) ≤ n · �k for
all a ∈ A \ {a∗}. The latter holds because �k > (1 − V)/
(m − logm). The expected social welfare achieved by f
under �v is at most

Pr t ∈ Ik[ ] · n · uk
2

+ Pr t /∈ Ik[ ] × 1
logm

· n · uk
2

+ logm − 1
logm

· n · �k
( )

≤ log 2 logm
( ) + 2
logm

· n · uk
2

,

where the final transition holds because uk ≤ 2logm · �k.
Thus, the distortion achieved by f is Ω(logm/
log logm), as desired. □

Our proof of Theorem 6 establishes a lower bound
of Ω(logm/ log logm) on the distortion associated
with randomized threshold approval votes by only
using the special case of the participatory budgeting
problem in which ca � 1 for each a ∈ A, that is, exactly
one alternative needs to be selected. This is exactly the
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setting studied by Boutilier et al. (2015). On the other
hand, Theorem 5 establishes a slightly weaker upper
bound of 2(log2 m) for the general participatory
budgeting problem. For the restricted setting of
Boutilier et al. (2015), one can improve the general
2(log2 m)upper bound to 2(logm), thus leaving a very
narrowgap from theΩ(logm/ log logm) lower bound.
This proof is similar to the proof of Theorem 5, whose
2(log2 m) bound is the result of a randomization over
2(logm) partitions of the alternatives based on their
cost and 2(logm) possible values of the threshold.
When costs are identical, there is no need to partition
based on cost, reducing the partitions by a loga-
rithmic factor. We defer the proof to the appendix.

Theorem 7. If ca � 1 for all a ∈ A, the distortion associated
with randomized threshold approval votes is 2(logm).
3.2. Deterministic Aggregation Rules
We next study the distortion that can be achieved
under different input formats if we are forced to use a
deterministic aggregation rule. Recall that the dis-
tortion associated with deterministic aggregation of
votes under an input format is the least distortion a
deterministic aggregation rule for that format can
achieve. Specifically, we study the distortion associ-
ated with deterministic aggregation of knapsack votes,
rankings by value and value for money, and deter-
ministic threshold approval votes.Weomit randomized
threshold approval votes as the inherent randomization
involved in elicitation makes the use of deterministic
aggregation rules hard to justify.

We find that rankings by value achieve Θ(m2)
distortion, which is significantly better than the dis-
tortion of knapsack votes (exponential in m) and that
of rankings by value for money (unbounded). This
separation between rankings by value and value for
money in this setting stands in stark contrast to the
setting with randomized aggregation rules, where
both input formats admit similar distortion. One
important fact, however, does not changewith the use
of deterministic aggregation rules: using threshold
approval votes still performs at least as well as us-
ing any of the other input formats considered here.
Specifically, we show that setting the threshold to
be t � 1/m results in 2(m2) distortion. The choice of
the threshold is crucial as, for example, setting a
slightly higher threshold t > 1/(m − 1) results in un-
bounded distortion.

3.2.1. Knapsack Votes. Our first result is an expo-
nential lower bound on the distortion associated with
knapsack votes when the aggregation rule is deter-
ministic. Although our construction requires the num-
ber of voters to be extremely large compared with the
number of alternatives, we remark that this is precisely
the case in real participatory budgeting elections, in
which a large number of citizens vote over much
fewer projects.

Theorem 8. For sufficiently large n, the distortion associ-
ated with deterministic aggregation of knapsack votes
is Ω(2m/ ̅̅̅

m
√ ).

Proof of Theorem 8. Imagine a case where every al-
ternative has cost 2/m (recall that the budget is 1).
It follows that no more than m/2� alternatives may
be selected while respecting the budget constraints.
Let S1, . . . , S( mm/2�) denote the ( m

m/2� ) subsets of A of
size m/2�.
Assume n ≥ ( m

m/2� ) and partition the voters into
( m
m/2� ) sets N1, . . . ,N( m

m/2� )
, each consisting of roughly

n/( m
m/2� ) voters; specifically, ensure that n/( m

m/2� )� ≤
ni ≤ �n/( m

m/2� )�, where ni � |Ni|, for all i ∈ [( m
m/2� )].

Construct an input profile of knapsack votes �κ, where
κi � Sk for all k ∈ [( m

m/2� )] and i ∈ Nk.
Let f denote a deterministic aggregation rule. We can

safely assume that | f (�κ)| � m/2� as otherwise we can
add alternatives to f (�κ), which can only improve the
distortion. Let f (�κ) � Sk∗ .
Construct a utility profile �v consistent with the input

profile �κ as follows. Fix b ∈ Sk∗ , and for all i ∈ Nk∗ , let
vi(b) � 1 and vi(a) � 0 for all a ∈ A \ {b}. Note that these
valuations are consistent with the votes of voters inNk∗ .
Next, fix a∗ ∈ A \ Sk∗ . Our goal is to make a∗ an at-

tractive alternative that f (�κ) missed. Note that a∗ ap-
pears in about half of the m/2�-sized subsets of A. For
all k ∈ [( m

m/2� )] such that a∗ ∈ Sk, and all voters i ∈ Nk,

let vi(a∗) � 1 and vi(a) � 0 for all a ∈ A \ {a∗}. This en-
sures sw(a∗, �v ) ≥ n · m/2�/m ≥ n/3 (for m ≥ 2).
For k ∈ [( m

m/2� )] \ {k∗} such that a∗ /∈ Sk, and all voters

i ∈ Nk, let vi(a′) � 1 for some a′ ∈ Sk \ Sk∗ , and vi(a) � 0
for all a ∈ A \ {a′}.
Observe that all voters who do not belong to Nk∗

assign zero utility to all the alternatives in Sk∗ , yield-
ing sw( f (�κ), �v ) ≤ nk∗ ≤ n/( m

m/2� ) + 1. By assumption,
n≥ ( m

m/2� ), so we have

dist f , �v
( ) ≥ n/3

n/
m

m/2�
( )

+ 1
� 1
6
· m

m/2�
( )

� Ω
2m̅̅̅
m

√
( )

,

as required. □

We next show that an almost matching upper
bound can be achieved by the natural plurality knap-
sack rule that selects the subset of alternatives submitted
by the largest number of voters.
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Theorem 9. The distortion associated with deterministic
aggregation of knapsack votes is 2(m · 2m).

Proof of Theorem 9. Let �v denote the underlying utility
profile, and let S∗ ⊆ A be the set of alternatives reported
by the largest number of voters. Due to the pigeonhole
principle, it must be reported by at least n/2m voters.
Further, each voter iwho reports S∗ must have vi(S∗) ≥
1/m because there must exist a ∈ A such that vi(a) ≥
1/m, and vi(S∗) ≥ vi(a).

Hence, we have sw(S∗, �v ) ≥ (n/2m) · 1/m, whereas
the maximum welfare any set of alternatives can
achieve is at most n. Hence, the distortion of the pro-
posed rule is at most m · 2m. □

3.2.2. Rankings by Value and by Value for Money.
While rankings by value and by value for money have
similardistortion incaseof randomizedaggregation rules,
deterministic aggregation rules lead to a clear separation
between the distortion of the two input formats.

We first show that deterministic aggregation of rank-
ings by value formoney cannot offer bounded distortion.
Our counterexample exploits the uncertainty in values
induced when alternatives have vastly different costs.

Theorem 10. The distortion associated with deterministic
aggregation of rankings by value for money is unbounded.

Proof of Theorem 10. Fix a, b ∈ A. Let ca � ε > 0, and
ck � 1 for all k ∈ A \ {a}. Recall that the budget is 1.
Hence, every deterministic aggregation rule must select
a single alternative.

Construct an input profile �σ in which each input
ranking has alternatives a and b in positions 1 and 2,
respectively. Let f be a deterministic aggregation rule.

If f (�σ) ∈ A \ {a}, the utility profile �v in which every
voter has utility 1 for a, and 0 for every alternative in
A \ {a} ensures dist( f ) ≥ dist( f , �v ) � ∞.

If f (�σ) � a, the utility profile �v in which every voter
has utility ε for a, 1 − ε for b, and 0 for every alternative
in A \ {a, b} ensures that dist( f ) ≥ dist( f , �v ) � (1 − ε)/ε.

Hence, in either case, dist( f ) ≥ (1 − ε)/ε. Because ε
can be arbitrarily small, the distortion is unbounded. □

We now turn our attention to rankings by value.
Caragiannis et al. (2016) study deterministic aggrega-
tion of rankings by value in the special case of our setting
where the cost of eachalternative equals the entire budget,
and establish a lower bound ofΩ(m2) on the distortion,
which carries over to our more general setting.

Theorem 11 (Caragiannis et al. 2016). For n ≥ m − 1, the
distortion associated with deterministic aggregation of rank-
ings by value is Ω(m2).

Caragiannis et al. (2016) also show that selecting the
plurality winner—the alternative that is ranked first
by the largest number of voters—results in distortion
at most m2. We show that this holds true even in our
more general setting, giving us an asymptotically
tight bound on the distortion.

Theorem 12. The distortion associated with deterministic
aggregation of rankings by value is 2(m2).
Proof of Theorem 12. Due to the pigeonhole principle,
the plurality winner, say a ∈ A, must be ranked first by
at least n/m voters, each of which must have utility at
least 1/m for a. Hence, the social welfare of a is at least
n/m2, while the maximum social welfare that any set of
alternatives can achieve is at most n, yielding a dis-
tortion of at most m2. □

3.2.3. Threshold Approval Votes. We now turn our
attention to threshold approval votes. As mentioned
earlier, our use of deterministic aggregation rules
makes randomized threshold selection less moti-
vated; we thus focus on deterministic threshold
approval votes.
First, we show that for some choices of the thresh-

old, the distortion can be unbounded.

Theorem 13. For a fixed threshold t > 1/(m − 1), the
distortion associated with deterministic aggregation of de-
terministic threshold approval votes is unbounded.

Proof of Theorem 13. Suppose ca � 1 for each a ∈ A.
Recall that the budget is 1. Let f denote a deterministic
aggregation rule for threshold approval votes. Suppose
the rule receives an input profile �τ in which no voter
approves any alternative. Without loss of generality,
let f (�τ) � a∗.
We construct an underlying utility profile such that

for each voter i ∈ N, vi(a) � 1/(m − 1) for a ∈ A \ {a∗},
and vi(a∗) � 0. Note that this is consistent with �τ. Now,
the optimal social welfare is n · 1/(m − 1), whereas the
welfare achieved by f is zero, yielding an unbounded
distortion. □

We next show that slightly reducing the threshold
to 1/m reduces the distortion to 2(m2), which is at least
as good as the distortion associated with any other
input format.

Theorem 14. For the fixed threshold t � 1/m, the distortion
associated with deterministic aggregation of deterministic
threshold approval votes is 2(m2).
Proof of Theorem 14. Let �τ denote an input profile, and
�v the underlying utility profile. Let S∗ ∈ ^c denote the
feasible set of alternatives with the highest number of
total approvals. The set S ∈ ^c is returned by the fol-
lowing algorithm: label the alternatives in order of the
number of approvals received to cost, where a1 has
the greatest ratio. Return whichever of {a1, . . . , ak−1}
and {ak} has more approvals, with k chosen so that
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{a1, . . . , ak−1} ∈ ^c and {a1, . . . , ak} /∈ ^c. Let P∗ and P
denote the total number of approvals received by al-
ternatives in S∗ and S, respectively.

Consider a knapsack problem where the value of
an alternative is the number of approvals it receives
under τ. Then, P∗ is the optimal knapsack solution,
whereas P is the solution quality achieved by the
greedy algorithm. Using the fact that this algorithm
achieves a 2-approximation of the (unbounded) knap-
sack problem (Dantzig 1957), we have

P ≥ 1/2( ) · P∗.
We can now establish an upper bound on the dis-
tortion of our rule. Let T be the feasible set of alter-
natives maximizing the social welfare. Then, T ach-
ieves at most P∗ total approvals under �τ. Each
approval of an alternative in T by a voter can con-
tribute at most 1 to the welfare of T, and each non-
approval of an alternative in T by a voter can con-
tribute atmost 1/m to thewelfare of T. Hence, we have

sw T, �v
( ) ≤ P∗ · 1 + n ·m − P∗( ) · 1/m( ).

Using a similar line of argument, we also have

sw S, �v
( ) ≥ P · 1/m( ).

Hence, the distortion of f is at most

P∗ + n ·m − P∗( )/m
P/m

≤ 2 · 1 + n ·m/P∗ − 1( )/m
1/m

� 2 · m + n ·m
n/m

− 1
( )

� 2 m2( )
,

where the first transition follows from P ≥ P∗/2. For
the second transition, note that with the threshold
being 1/m, each voter must approve at least one al-
ternative. Hence, there must exist an alternative with
at least n/m approvals, implying that P∗ ≥ n/m. □

4. Computing Worst-Case Optimal
Aggregation Rules

Our theoretical results focus on the best worst-case
(over all input profiles) distortion we can achieve
using different input formats. However, specific in-
put profiles may admit distortion much better than
this worst-case bound. In practice, we are more in-
terested in the deterministic or randomized aggre-
gation rule that, on each input profile, returns the
feasible set of alternatives or a distribution thereover
which minimizes distortion, thus achieving the op-
timal distortion on each input profile individually.
The optimal deterministic aggregation rule is given by

f ∗ �ρ
( ) � argmin

S∈^c

max
�v8�ρ

maxT∈^c sw T, �v
( )

sw S, �v
( ) , ∀�ρ,
and the optimal randomized aggregation rule is
given by

f̄ ∗ �ρ
( ) � argmin

p∈Δ ^c( )
max
�v8�ρ

maxT∈^c sw T, �v
( )

E sw p, �v
( )[ ] , ∀�ρ,

where Δ(X) denotes the set of distributions over the
elements of X.
Although these profile-wise optimal aggregation

rules dominate all other aggregation rules, they may
be computationally difficult to implement, because
they optimize a nonlinear objective function (a ratio)
over a complicated space.
We design practical generic algorithms for com-

puting the deterministic and randomized profile-
wise optimal aggregation rules for the input for-
mats we study. The deterministic rule reformulates
this problem as a linear-fractional program, which is
recast to a linear program with the Charnes-Cooper
transformation (Charnes and Cooper 1962). The pro-
cedure for the randomized aggregation rule is a two-
stage algorithm in the spirit of the cutting-set ap-
proach ofMutapcic and Boyd (2009). More details can
be found in Online Appendix EC.2.

5. Empirical Results
Our theoretical results in Section 3 bound the dis-
tortion of an observed input profile. Recall that dis-
tortion is the worst-case ratio of the optimal social
welfare to the social welfare achieved, where the
worst case is taken over all utility profiles consistent
with the observed input profile. In practice, we care
about this welfare ratio according to the actual un-
derlying utility profile. Thus, a distortion-minimizing
aggregation rule is not guaranteed to be optimal for a
specific utility profile. Furthermore, it may be the case
that for some input format almost all utility profiles
lead to welfare ratios close to the distortion, whereas
for another only a very small fraction of degenerate
utility profiles have a welfare ratio close to the dis-
tortion and all the remaining utility profiles have a
welfare ratio close to one, that is, lead to almost op-
timal outcomes. Our empirical study attempts to
determine what welfare ratio we should expect from
a “usual” utility profile—in other words, how closely
we are able to approximate the optimal social welfare
in practice.

5.1. Evaluation Metrics
We are interested in efficiency and scalability. For
efficiency, we measure the empirical average (across
instances) of the welfare ratio—the ratio of the opti-
mal social welfare to that achieved by the aggregation
rule (which only has access to the input profile, not the
utility profile). Note that this ratio is different from
distortion, which is a worst-case guarantee on the
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social welfare ratio across all utility profiles that could
have induced an input profile. For scalability, we
report the time it takes to compute the outcome
(in seconds).

5.2. Data Sets
We use data from participatory budgeting elections
held in 2015 and 2016 in Boston, Massachusetts. Both
elections offered voters 10 alternatives. The 2015 data
set contains 2,600 four-approval votes (voters were
asked to approve their four most preferred alterna-
tives) and the 2016 data set contains 4,430 knap-
sack votes.

For each data set, we conduct three independent
trials. In each trial, we create r subprofiles, each
consisting of n voters drawn at random from the
population. For each subprofile, we draw k random
utility profiles �v consistent with the subprofile, and
use these to analyze the performance of different
approaches. We use the real costs of the projects
throughout. The choices of parameters (r, n, k) for the
three trials are (5, 10, 10), (8, 7, 10), and (10, 5, 10). We
choose this experimental design to yield sufficiently
many samples to verify statistical significance of the
results while completing in a reasonable amount of
time. The bottleneck in these experiments is the com-
putation of the randomized distortion-minimizing
voting rules, which is very slow. Fortunately, their
deterministic counterparts generally lead to out-
comes with higher social welfare and scale to real-
istic instance sizes (see Figures 1 and 2).

5.3. Approaches
We use the utility profile �v drawn to create an input
profile in the four input formats we study. For
each format, we use the deterministic as well as
randomized distortion-minimizing aggregation rule.
Figure 1. (Color online) Average Welfare Ratio of Different
Approaches to Participatory Budgeting

Note. A lower welfare ratio is better.
The nontrivial algorithms we devise for these rules are
presented in Section 4. These eight approaches are
referred to using the type of aggregation rule used
(Det or Ran), and the type of input format (Knap, Val,
VFM, or Th Ap).
Unlike the other input formats, threshold approval

votes are technically a family of input formats, one for
each value of the threshold. Although randomizing
over the threshold is required to minimize the dis-
tortion (the worst-case ratio of the optimal and
achieved social welfare), as is our goal in the theo-
retical results of Section 3, minimizing the expected
ratio of the two can be achieved by a deterministic
threshold. In our experiments, we learn the optimal
threshold value based on a holdout set that is not
subsequently used. This learning approach is prac-
tical as it only uses observed input votes rather than
underlying actual utilities. This choice likely gives
threshold approval votes an edge, but arguably it is
an advantage this input format would also enjoy
in practice.
In addition to our eight approaches, we also test

two approaches used in real-world elections (Goel
et al. 2019): greedy 4-approval (Gr 4-Ap) and greedy
knapsack (Gr Knap). The former elicits 4-approval
votes, and greedily selects the most widely approved
alternatives until the budget is depleted. The latter is
almost identical, except for interpreting a knapsack
vote as an approval for each alternative in the knapsack.

5.4. Results
Figure 1 shows the empirical average of the welfare
ratio of the different approaches with 95% confidence
intervals, sorted from best to worst. The differences in
performance between all pairs of rules—except be-
tween Det Knap and Ran Val, and between Ran VFM
and Gr Knap—are statistically significant (Johnson
2013) at a 95% confidence level.
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A few comments are in order. First, determinis-
tic distortion-minimizing aggregation rules generally
outperform their randomized counterparts. This is
not entirely unexpected. Randomized rules achieve
better distortion, that is better worst-case guarantees
when the utility profile is unknown. When the utility
profile is drawn from a distribution, as it is here, there
exists a deterministic rule minimizing the expected
welfare ratio objective.

Second, approaches based on deterministic rules
are able to limit the loss in social welfare due to in-
complete information about voters’ utility functions
to only 2%–3%. Among these approaches, the one
using threshold approval votes incurs the mini-
mum loss.

Third, knapsack votes consistently lead to higher
empirical welfare ratios than alternative input for-
mats. This, together with the poor theoretical guar-
antees for knapsack votes, suggests that it may not be
worthwhile to ask voters to solve their personal
13-hard knapsack problems before casting vote.

5.5. Scalability
Weare particularly interested in deterministic distortion-
minimizing rules, both because of their superior empir-
ical performance (see Figure 1) and the fact that our
discussions with officials from several cities have
revealed a hesitance to use randomized voting rules.
Figure 2 reports the average time to compute the
deterministic worst-case optimal set of alternatives
on a log-log scale, averaged over 20 trials on the
Boston 2016 data set. Since this data set contains only
4,430 votes, voters were sampled with replacement to
mimic larger instances. The experiments were run on
an eight-core Intel Core i7-7700 CPU with 3.6 GHz
processor speed and 65 gigabytes memory.

Observe that the running time scales gracefully
with the number of voters. When sampling 10,000
voters with replacement, rules such as Det Th Ap
and Det Val take less than three hours, indicating
the practicability of these methods for participatory
budgeting elections at the scale of those in Boston
(Goel et al. 2019). We also note that, due to the one-off
nature of participatory budgeting elections, it is con-
ceivable to use an aggregation algorithm that takes
several days or even weeks to compute the optimal set
of alternatives.

6. Discussion
Our results indicate that approval voting should re-
ceive serious consideration as the input format of
choice for participatory budgeting, and that knapsack
voting may not perform well with respect to social
welfare. We also observe that optimization-based
aggregation leads to outcomes with significantly higher
social welfare than greedy aggregation.
One advantage of traditional greedy aggregation
methods over distortion-minimizing aggregations
is that it is easy to publish the summarized votes
in such a manner that any voter can verify the out-
come. It is unclear to what extent optimization-based
aggregation is hindered by this relative lack of trans-
parency, however, the recent adoption of ranked-choice
voting in New York City and several Democratic pri-
maries (Fortin 2020) suggests that voters are increas-
ingly comfortable with elections in which verifying the
outcome is nontrivial.
It bears repeating that distortion, and the worst-

case analysis in the presence of only ordinal information
employed here, can be applied to many combinato-
rial optimization problems includingmaximumweight
spanning tree and maximum b-matching.
Some issues that are beyond the scope of this paper

have been addressed in subsequent works. First,
central to our approach is the cognitive burden an
input format places on a voter (were it not for this, we
would elicit full utility functions; the whole point is to
reduce cognitive load). Benadè et al. (2018) conduct
human subject experiments to measure how difficult
voters find different input formats, and find that al-
though threshold approval voting is slightly harder to
understand at first, it is no more difficult to use than
the other common input formats. Second, we show
that asking a voter about a single threshold is suffi-
cient to achieve lowdistortion.However, onemay ask
whether there is a benefit to asking voters to reflect on
two, 10, or 100 different thresholds. Mandal et al.
(2019, 2020) answer this question by studying the
trade-off between the number of bits an input format
requires from a voter, and the distortion it achieves.
Finally, Bhaskar et al. (2018) show that the voting rule
we use in the proof of Theorem 3, which relies on the
harmonic scoring rule, is truthful. They also observe
that independently (uniformly) randomizing every
voter’s threshold leads to distortion approaching one.
Whatever the best approach to participatory budg-

eting is, now is the time to identify it, before various
heuristics become hopelessly ingrained.We believe that
this is a grand challenge for computational social choice,
especially at a point in the field’s evolution where it is
gaining real-world relevance by helping people make
decisions in practice.
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Endnotes
1 See http://www.participatorybudgeting.org, accessed December
1, 2019.
2 See http://voxpopuli.stanford.edu, accessed December 1, 2019.
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