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The design of algorithms for political redistricting generally takes one of two approaches: optimize an objective

such as compactness or, drawing on fair division, construct a protocol whose outcomes guarantee partisan

fairness. We aim to have the best of both worlds by optimizing an objective subject to a binary fairness

constraint. As the fairness constraint we adopt the geometric target, which requires the number of seats won

by each party to be at least the average (rounded down) of its outcomes under the worst and best partitions of

the state; but we extend this notion to allow the two parties to compute their targets with respect to different

election datasets. Our theoretical contribution is twofold: we introduce a new model of redistricting that

closely mirrors the classic model of cake-cutting and we prove the feasibility of the geometric target in this

model. Our empirical results, which use real election data and maps of six US states, demonstrate that the

geometric target is feasible in practice and that imposing it as a fairness constraint comes at almost no cost to

three well-studied optimization objectives.

1 INTRODUCTION
To be elected to the U.S. House of Representatives, a candidate must win a plurality election in their

district. These districts are redrawn every decade based on the most recent census; the composition

and creation of districts are governed by both federal and state laws. At the federal level, the Voting

Rights Act requires that districts be drawn to allow minority groups to fully participate in the

democratic process. Locally, many states expect districts to be contiguous and several require

districts to be compact and respect “communities of interest.”

These guidelines, however, are often open to interpretation. For example, only six states specify a

metric by which compactness is measured; elsewhere the determination of whether or not a district

is compact is based on rules of thumb. Gerrymandering is the process of exploiting this flexibility

by carefully drawing district boundaries for political gain, for example to protect an incumbent or

to benefit (or suppress) a specific class, race or political party.

Gerrymandering has a long history. The term dates back to then-Governor of Massachusetts El-

bridge Gerry’s 1812 approval of a salamander-shaped district that was thought to aid his Democratic-

Republican Party. In 1962, the U.S. Supreme Court ruled that population inequality in redistricting

is justiciable, in part because there exist “judicially discoverable and manageable standards for

resolving it” [1]. The Supreme Court has also ruled against racial gerrymandering, for example in

1960 [18] and in 1993 [41]. By contrast, the Supreme Court has found it much harder to provide

clear guidance around partisan gerrymandering— the difficulty is, as Justice Kennedy put it, in

“providing a standard for deciding how much partisan dominance is too much” [26]. In response,

statistical approaches for detecting partisan gerrymanders were developed [7, 8, 13, 21]; such

methods have played a key role in the decisions made by courts in Pennsylvania [27] and North

Carolina [9] to strike down Congressional maps in these states. Several other states have taken

measures intended to prevent partisan gerrymandering, by establishing independent redistricting

commissions that typically include an equal number of Democratic and Republican members, as

well as unaffiliated voters.

It is evident, therefore, that regardless of the political or legal mechanism used to implement

them, there is a great need for rigorous methods for designing electoral district maps, which

we refer to as partitions. This problem is often approached from an optimization perspective

[16, 28, 34, 42, 43], which involves setting an objective— such as compactness, or the number of

“competitive” districts— and finding the optimal partition that satisfies various geographic and

demographic constraints like contiguity and population equality. However, optimization-based
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approaches do not necessarily lead to fair outcomes that would be acceptable to both major political

parties.

1.1 Our Approach
To address the shortcomings of the pure optimization-based approach, we propose to combine

it with ideas from fair division [4, 31] in a way that ideally enjoys the best of both worlds. On a

high level, we wish to enforce an intuitive yet rigorous notion of fairness that is also binary, in

the sense that it either is or is not satisfied— there is no question of degree. One key advantage

of such a notion is that it would allow a simple explanation of why a partition satisfying it is

fair [38]. Among all valid partitions that satisfy the fairness notion, we find one that optimizes

a given objective function. This approach—optimizing an objective function subject to a binary

fairness guarantee— is akin to recent practical success stories in fair division, such as a rent division

algorithm [15] that has been used to solve tens of thousands of real-world instances.

A key question, of course, is which fairness notion to use. One natural (albeit flawed) answer

is proportionality: the number of seats won by each party should be proportional to its statewide

support. Unfortunately proportionality is not a feasible standard [32]. For example, the Republican

party won roughly 32% of the Massachusetts statewide vote in the 2016 presidential election.

Strict proportionality suggests that Republicans should win three (roughly 32%) of the state’s

nine congressional seats. However, this is impossible: there is no partition that complies with

Massachusetts’ redistricting laws under which the Republican party wins any congressional seats

based on this election data [14], as the distribution of Republican-leaning voters across the state

is rather homogeneous. This is not necessarily disturbing in and of itself; Supreme Court rulings

“clearly foreclose any claim that the Constitution requires proportional representation” [10].

Instead, we employ the geometric target fairness notion of Landau and Su [25]. To motivate it from

our own viewpoint, imagine a procedure in which a fair coin is flipped, and whichever party wins

the coin flip is given absolute power to redistrict a state as they wish (subject to the relevant laws

regarding contiguity, population equality etc.). This procedure would lead to extremely partisan

partitions ex post, that is, after the coin is flipped. However, it is certainly impartial ex ante (before
the coin is flipped), as every party is equally likely to suffer or benefit from it. The geometric target

distills the essence of what makes this procedure fair, while avoiding its extreme partisan outcomes:

each party must win the expected number of districts it would win under the above procedure,

rounded down. In other words, the geometric target is the average, rounded down, of the maximum

number of districts the party would win under any partition that satisfies the legal constraints, and

the minimum number of districts the party would win under any such partition. We say that a

partition is a GT partition if the number of districts each party wins is at least its geometric target.
1

For example, take the 2011 redistricting of Pennsylvania, which the state’s Supreme Court

ultimately struck down as unconstitutional and replaced with a remedial plan [27]. The political

poll aggregation website FiveThirtyEight published an “Atlas of Redistricting”
2
in which they study

redistricting across the United States. Part of this effort involved constructing gerrymandered

partitions that favor either of the major political parties. Taking these partitions as the most

extreme outcomes and evaluating on the presidential election data from 2016, we find that the pro-

Democratic map leads to nine Democratic congressional seats (out of 18) while the pro-Republican

map leads to five Democratic seats. Based on this the geometric target of the Democratic party (the

average of their extreme outcomes) is seven, compared to the five won under the 2011 plan.

1
Rounding is necessary, since it is impossible to guarantee that two parties each win, say, at least 4.5 districts out of nine.

2
See https://projects.fivethirtyeight.com/redistricting-maps/.
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The foregoing example suggests that the guarantee given by the geometric target depends on

the underlying election data, which can be another source of contention—what happens if the

two parties disagree on which dataset should be used? One of our conceptual contributions is that

we explicitly allow the geometric targets of the two parties to be computed with respect to two

different datasets. Thus, no matter whether the discrepancies arise from genuine informational

disparities or deliberate attempts to achieve a more desirable outcome by manipulating data, any

honest party should be satisfied by the final redistricting outcome.

As intuitively appealing as this extension of the geometric target is, however, it would not be

useful if, like proportionality, it cannot be enforced— and so far there has been scant evidence that

it can (see Section 1.3). Even if it can be enforced, it could conceivably restrict the space of feasible

partitions to the point of significantly harming standard optimization objectives like compactness.

This motivates our research questions:

Do GT partitions exist in theory and are they feasible in practice? If so, is the geometric
target compatible with standard optimization objectives?

The validity of our proposed approach hinges on the answers to both questions being positive.

(Spoiler alert: they are.)

1.2 Overview of Results
To develop a theoretical understanding of the existence of GT partitions, we introduce a novel

model of redistricting that is inspired by the common model of cake cutting [4, 37, 39]. In our

model, the state is represented as an interval, with the goal being to partition the state into districts,

each of which is a finite union of closed intervals (this mirrors the typical assumption about pieces

of cake). The distribution of the supporters of each party across the state is represented through a

density function; the number of seats won by a party is the number of districts in which it has the

greater support.

Our main theoretical result (Theorem 2.2) is that GT partitions always exist in our model, even

when the geometric targets of the two parties are computed with respect to two different pairs of

density functions (corresponding to two different datasets). Despite the simplicity of our model,

this result is revealing because it overcomes one of the key obstacles to the design of fair partitions

(which is inherent in the model): the fact that the supporters of the two parties cannot be arbitrarily

divided between districts, as any subinterval is associated with a fixed number of supporters of

both parties. Our result is proved via a novel “cut-and-choose” protocol whereby one party divides

a strategically critical subset of the interval into two equal pieces and the other party decides which

party controls redisticting over which piece.

Having established the existence of GT partitions, we empirically assess the quality of those

partitions in terms of the optimization objectives of compactness, efficiency gap and the number of

competitive districts in six U.S. states. We find that restricting our search to GT partitions rarely

leads to a significant decrease in any of the three objectives, regardless of whether or not parties

agree on the voter distribution. We conclude that the price of enforcing geometric targets as a

notion of fairness is extremely low.

1.3 Related work
The connection between redistricting and fair division has inspired several papers that put forward

interactive protocols by which the parties take turns splitting the state and choosing pieces [3, 11, 24,

25, 35]. Of those, our work is most closely related to that of Landau and Su [25], who introduced the

geometric target. They analyze the LRY protocol of Landau, Reid, and Yershov [24], in which a neutral
administrator presents both parties with a sequence of bipartitions (𝐿1, 𝑅1), (𝐿2, 𝑅2), . . . , (𝐿𝑚, 𝑅𝑚) of
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the state into two pieces, with each 𝐿𝑖 ⊆ 𝐿𝑖+1. For each bipartition, both parties are asked whether

they would rather redistrict 𝐿𝑖 or 𝑅𝑖 , with the other party redistricting the other side. If a point

of agreement cannot be found, then there must be a specific 𝑖 at which both parties would prefer

redistricting 𝑅𝑖 to 𝐿𝑖 , but prefer redistricting 𝐿𝑖+1 to 𝑅𝑖+1, so randomness is used to determine

whether to use partition 𝑖 or 𝑖 + 1, and which party controls which piece. Landau and Su observe

that, if the feasible set of electoral maps is constrained to respect a given bipartition, then at least
one of the two options the parties are asked to choose between must meet their geometric target.

3

However, this does not imply that the final outcome selected by the LRY protocol satisfies the

geometric target itself, even for the party whose preferred choice was selected. Moreover, the party

whose preferred choice was not selected cannot be guaranteed to have met even this weaker version

of the geometric target. Landau and Su acknowledge these shortcomings and informally argue

that they are unlikely to cause serious problems in practice, appealing to the random elements of

the protocol and the neutrality of the administrator. De Silva, Gales, Kagy and Offner [11] provide

a more rigorous treatment of the theoretical guarantees of the LRY protocol, showing that, in

the absence of any geometric constraints, both parties are guaranteed to win at least two seats

fewer than their geometric targets. However, under a simple grid-based model with a moderate,

plausible compactness constraint, they show that the number of districts won by a party can be

arbitrarily far from the geometric target. To the best of our knowledge, our paper presents the first

protocol that provably satisfies the geometric targets of both parties under a suitable model. Our

work also differs significantly because we study the geometric target from the viewpoint that it

should be enforced as an optimization constraint, allowing flexibility and compatibility with other

redistricting objectives. We view our protocol not as a practically implementable system, but rather

as a proof that GT partitions always exist, justifying our experimental approach as theoretically

sound.

Beyond the fair-division viewpoint, partisan symmetry [19, 22, 33] and the efficiency gap [44]

are alternative notions aimed at measuring how partisan a proposed plan is. Partisan symmetry

ensures anonymity by requiring that parties are treated identically in the sense that each party

would win the same number of seats as the other when they receive any particular fraction of the

vote. To determine whether a partition in which one party wins 65% of the seats with 53% of the

votes is impartial according to partisan symmetry, we must evaluate the number of seats the other

party would have won had they received 53% of the votes; indeed, this comparison must be done

for the entire spectrum of potential outcomes. These hypothetical outcomes are typically generated

by starting from a real election outcome (or a combination of several) and applying uniform [5] or

approximately uniform swings [17, 23] to model changes in voters’ political preferences. Practically,

uniform swings do not allow for the types of changes in voter preferences that occur in reality, and

requiring partisan symmetry under more general models of electoral systems can be infeasible. The

efficiency gap measures the net difference in the fraction of each party’s wasted votes— every vote

cast for the minority in a district is deemed to have been wasted, as are all votes for the majority

above the threshold required to win the district. Classic gerrymandering techniques like packing

(concentrating a party’s supporters in one district) and cracking (splitting a party’s supporters

into minorities in across many districts) lead to large efficiency gaps. A maximum efficiency gap

threshold of 8% has been proposed, although there are instances where this is impossible to attain.

On the optimization side, recent work has studied computational methods for redistricting from

the perspective that there is an inherent trade-off between fairness and compactness [20, 40, 45].

Under cardinal measures of fairness such as proportionality or the efficiency gap, there is a “Pareto-

frontier” of optimal partitions, at which improving fairness comes at a cost to compactness, and

3
This is referred to as the “good choice property” and is very easy to prove.
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vice versa. Our approach is fundamentally different because our fairness condition is a binary

constraint. Thus, our frontier necessarily has only two points: the most compact partition, and the

most compact partition satisfying the geometric targets of both parties. In contrast to the recent

work of Schutzman [40], we find that the trade-off is not significant, which is a testament to the

robustness and usefulness of the geometric target as a fairness requirement.

2 EXISTENCE OF GT PARTITIONS
In this section we develop a simple, continuous model of the redistricting problem, reminiscent of

the standard cake-cutting model [4, 37, 39], and prove that GT partitions always exist.

2.1 Model
We model the state as the unit interval [0, 1]. A district is a subset of [0, 1] that can be expressed

as a finite union of closed intervals. An instance of the state-cutting problem is specified by a

target number of districts𝑚 ∈ Z≥1, a set of 𝑛 parties 𝑁 , and a set of 𝑛2 voter distribution functions
{𝑣 𝑗

𝑖
| 𝑖, 𝑗 ∈ 𝑁 } giving the measure of support for party 𝑗 according to party 𝑖 over any district. (We

only concern ourselves with the case where 𝑁 = {1, 2} in this paper.) We assume that each 𝑣
𝑗

𝑖
is

consistent with a measurable density function 𝑓
𝑗

𝑖
: [0, 1] → [0, 1], where, for any district 𝐷 ,

𝑣
𝑗

𝑖
(𝐷) =

∫
𝐷

𝑓
𝑗

𝑖
(𝑥)𝑑𝑥.

We additionally assume that the population density has been normalized so that, for any 𝑥 ∈ [0, 1]
and 𝑖 ∈ 𝑁 , ∑︁

𝑗 ∈𝑁
𝑓
𝑗

𝑖
(𝑥) = 1.

This implies that, for any district 𝐷 and party 𝑖 ,∑︁
𝑗 ∈𝑁

𝑣
𝑗

𝑖
(𝐷) = 𝜇 (𝐷),

where 𝜇 (𝐷) is the measure of 𝐷 . Figure 1 begins a hypothetical running example instance of the

state-cutting problem.

To discuss the number of seats won by a party with respect to a partition of [0, 1] into districts,

we are confronted with the technical issue of how to resolve perfect ties. Our solution is to assume

that whoever is drawing the electoral districts has the ability to resolve ties in whatever way they

wish. In other words, a district partition comes with a built-in tie-breaking rule, so to define a

partition, one must not only specify where within [0, 1] each district lies, but also who wins each

district in the case of a tie. Our results do not depend critically on this modeling choice; it is mainly

for elegance and ease of exposition. Formally, for any𝑚 ∈ Z≥1 and 𝑆 ⊆ [0, 1], an𝑚-partition of 𝑆 is

a pair (𝑃,𝑇 ), where 𝑃 = {𝐷1,𝐷2, . . . ,𝐷𝑚𝜇 (𝑆) } is a set of districts and 𝑇 : 𝑃 → 𝑁 is a tie-breaking

rule. Furthermore, 𝑃 must satisfy the following axioms:

(1) For all 𝑘 , 𝜇 (𝐷𝑘 ) = 1

𝑚
.

(2) For all 𝑘1, 𝑘2, 𝜇 (𝐷𝑘1 ∩ 𝐷𝑘2 ) = 0.

(3)

⋃
𝑘 𝐷𝑘 = 𝑆 .

We write P(𝑚) for the set of all𝑚-partitions of [0, 1]. Given an instance of the state-cutting problem
and an𝑚-partition (𝑃,𝑇 ), we denote the number of districts won (in the sense of absolute majority)

by each party 𝑗 ∈ 𝑁 , according to party 𝑖 ∈ 𝑁 , by

𝑢
𝑗

𝑖
(𝑃,𝑇 ) :=

����{𝐷 ∈ 𝑃 | 𝑣 𝑗
𝑖
(𝐷) > 1

2𝑚
or

(
𝑣
𝑗

𝑖
(𝐷) = 1

2𝑚
and 𝑇 (𝐷) = 𝑗

)}���� .
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Fig. 1. An instance of the state-cutting problem where 𝑁 = {1, 2} and𝑚 = 10. The density functions 𝑓 1
1
and

𝑓 2
2
are shown in blue and red, respectively. This is a full specification of the instance, since we must have

𝑓 2
1
(𝑥) = 1 − 𝑓 1

1
(𝑥) and 𝑓 1

2
(𝑥) = 1 − 𝑓 2

2
(𝑥), and the voter distribution functions can be computed by taking

integrals, i.e., 𝑣1
1
( [0.5, 0.7]) =

∫
0.7

0.5
𝑓 1
1
(𝑥)𝑑𝑥 = 0.1. The two parties agree on the distribution of voters over

[0, 0.5], but disagree everywhere else.

For each district 𝐷 in the set above, we say that party 𝑗 wins 𝐷 according to 𝑖 under (𝑃,𝑇 ). When

𝑗 = 𝑖 , we simply say 𝑖 wins 𝐷 under (𝑃,𝑇 ). A GT partition is an𝑚-partition (𝑃,𝑇 ) of [0, 1] such that,

for all 𝑖 ∈ 𝑁 , the geometric target for party 𝑖 is satisfied:

𝑢𝑖𝑖 (𝑃,𝑇 ) ≥


min

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢𝑖𝑖 (𝑃 ′,𝑇 ′) + max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢𝑖𝑖 (𝑃 ′,𝑇 ′)

2

 .
For example, in the instance from Figure 1, we may define a 10-partition (𝑃,𝑇 ) by taking

𝑃 := {[0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5],
[0.5, 0.6], [0.6, 0.7], [0.7, 0.8], [0.8, 0.9], [0.9, 1]}.

According to party 1, party 1 only wins districts [0.3, 0.4], [0.4, 0.5], [0.5, 0.6], and, depending on𝑇 ,
[0.2, 0.3]. Party 2 agrees with this assessment, except that party 1 also wins [0.6, 0.7] according
to party 2. As we will see in the next section, the geometric target for party 1 is to win at least

⌊ 0+8
2
⌋ = 4 districts, and the geometric target for party 2 is to win at least ⌊ 3+10

2
⌋ = 6 districts, each

according to their own voter distribution functions. Thus, if we set𝑇 ( [0.2, 0.3]) := 1, the geometric

target for party 1 will be satisfied; if we set 𝑇 ( [0.2, 0.3]) := 2, the geometric target for party 2 will

be satisfied; but there is no choice of tie-breaking rule satisfying both targets simultaneously. In

other words, for this choice of 𝑃 , there is no 𝑇 such that (𝑃,𝑇 ) is a GT partition.
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Fig. 2. An illustration of the repartitioning step from the proof of Theorem 2.1. The top partition is{[
0, 2

9

]
∪
[
4

9
, 5
9

]
,
[
3

9
, 4
9

]
∪
[
5

9
, 6
9

]
∪
[
15

18
, 17
18

]
,
[
2

9
, 3
9

]
∪
[
6

9
, 15
18

]
∪
[
17

18
, 1
]}
, and the bottom partition is{[

0, 2
9

]
∪
[
3

9
, 4
9

]
,

[
4

9
, 6
9

]
∪
[
15

18
, 17
18

]
,
[
2

9
, 3
9

]
∪
[
6

9
, 15
18

]
∪
[
17

18
, 1
]}
.

2.2 Proof of Existence
It is relatively straightforward to see that GT partitions always exist in the case where 𝑣1

1
≡ 𝑣1

2
,

meaning that both parties agree exactly on the distribution of party support. The following theorem

is superseded by our main result (Theorem 2.2), but it is nevertheless instructive as a warm-up.

Theorem 2.1. Given any instance of the state-cutting problem in which 𝑁 = {1, 2} and 𝑣1
1
≡ 𝑣1

2
, a

GT partition always exists.

Proof. Let (𝑃1,𝑇1) be a best𝑚-partition of [0, 1] for party 1 (which is a worst𝑚-partition for

party 2), and let (𝑃2,𝑇2) be a worst𝑚-partition of [0, 1] for party 1 (which is a best𝑚-partition for

party 2). Without loss of generality assume each 𝑇𝑖 breaks ties in favor of party 𝑖 . For any given

𝑖 ∈ {1, 2}, we imagine bubble-sorting the disjoint intervals comprising the districts of 𝑃𝑖 , where the

sort key of an interval is the index of the district in 𝑃𝑖 to which it belongs. Each time two adjacent

intervals are swapped, we repartition the corresponding sub-interval to get a new partition, as

in Figure 2. In the end, we arrive at the simplest possible partition 𝑃∗
, in which each district is

connected (like the example 𝑃 from Section 2.1). This creates a chain of partitions from 𝑃1 to 𝑃
∗
to

𝑃2, each differing from the previous one on at most 2 districts (the ones containing the adjacent

intervals that were swapped). Consistently using 𝑇1 to break ties, we have a chain of𝑚-partitions

from (𝑃1,𝑇1) to (𝑃2,𝑇1).
We claim that, at each step in this chain, the number of districts won by party 1 (and thus party 2

as well) changes by at most ±1. Suppose toward a contradiction that this was not the case at some

step, going from (𝑃,𝑇1) to (𝑃 ′,𝑇1). Let 𝑣1 denote the common function 𝑣1
1
≡ 𝑣1

2
. Let the two districts

on which 𝑃 and 𝑃 ′
differ be 𝐷1, 𝐷2 ∈ 𝑃 and 𝐷 ′

1
, 𝐷 ′

2
∈ 𝑃 ′

. Since we are breaking ties in favor of party

1, the only way that the number of wins can differ by at least 2 is if party 1 has a weak majority

in 𝐷1 and 𝐷2, but a strict minority in 𝐷 ′
1
and 𝐷 ′

2
; or a strict minority in 𝐷1 and 𝐷2, and a weak

majority in 𝐷 ′
1
and 𝐷 ′

2
. These two cases are completely analogous, so we only consider the former

case, i.e., 𝑣1 (𝐷1) ≥ 1

2𝑚
, 𝑣1 (𝐷2) ≥ 1

2𝑚
, 𝑣1 (𝐷 ′

1
) < 1

2𝑚
, and 𝑣1 (𝐷 ′

2
) < 1

2𝑚
. Then, by the additivity of 𝑣1,

1

𝑚
≤ 𝑣1 (𝐷1) + 𝑣1 (𝐷2) = 𝑣1 (𝐷1 ∪ 𝐷2) = 𝑣1 (𝐷 ′

1
∪ 𝐷 ′

2
) = 𝑣1 (𝐷 ′

1
) + 𝑣1 (𝐷 ′

2
) < 1

𝑚
.

We have a contradiction, so the number of districts won by party 1 can change by at most ±1 at
each link in the chain.

Finally, we extend the chain by𝑚 more steps from (𝑃2,𝑇1) to (𝑃2,𝑇2) by changing the tie-breaking
rule one district at a time. Again, the number of wins for party 1 changes by at most ±1 at each
step. Thus, at some point in the middle of the chain of𝑚-partitions from (𝑃1,𝑇1) to (𝑃2,𝑇2), the
rounded average number of wins for each party between these two extremes is realized. □
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Our main result, which we now state and begin to prove, concerns the general case where the

parties may disagree on the distribution of voters.

Theorem 2.2. Given any instance of the state-cutting problem in which 𝑁 = {1, 2}, a GT partition
always exists.

To prove this theorem, we need some more definitions and lemmas. We begin by observing that

it is possible to subdivide any district into two smaller districts of arbitrary sizes with the same

fraction of party support as the original district.

Lemma 2.3. Given a voter distribution function 𝑣 , a district 𝐷 , and a real number 𝑠 ∈ [0, 1], there
exist districts 𝐷1 and 𝐷2 such that

(1) 𝐷1 ∪ 𝐷2 = 𝐷 ,
(2) 𝜇 (𝐷1 ∩ 𝐷2) = 0,
(3) 𝜇 (𝐷1) = 𝑠𝜇 (𝐷), 𝜇 (𝐷2) = (1 − 𝑠)𝜇 (𝐷), and
(4) 𝑣 (𝐷1) = 𝑠𝑣 (𝐷), 𝑣 (𝐷2) = (1 − 𝑠)𝑣 (𝐷).

The proof uses a fixed-point argument— see Appendix A for the details. By iteratively applying

Lemma 2.3, we obtain a more general form. This proof is completely straightforward, and hence

omitted.

Lemma 2.4. Given a voter distribution function 𝑣 , a district 𝐷 , and 𝑠 ∈ R>0 ∪ {∞}, there exist
districts 𝐷1,𝐷2, . . . ,𝐷 ⌊1/𝑠 ⌋ such that

(1) for all 𝑘 , 𝐷𝑘 ⊆ 𝐷 ,
(2) for all 𝑘1 ≠ 𝑘2, 𝜇 (𝐷𝑘1 ∩ 𝐷𝑘2 ) = 0,
(3) for all 𝑘 , 𝜇 (𝐷𝑘 ) = 𝑠𝜇 (𝐷), and
(4) for all 𝑘 , 𝑣 (𝐷𝑘 ) = 𝑠𝑣 (𝐷).

Throughout the remainder of this section, fix an instance of the state-cutting problem satisfying

the hypotheses of Theorem 2.2. For any 𝑖, 𝑗 ∈ 𝑁 , we say that 𝑗 is a minority party according to 𝑖 if
𝑣
𝑗

𝑖
( [0, 1]) ≤ 1

2
, and a majority party according to 𝑖 if 𝑣 𝑗

𝑖
( [0, 1]) ≥ 1

2
. When 𝑗 = 𝑖 , we simply say 𝑖 is a

minority/majority party. Note that this definition is merely with respect to the data of party 𝑖 , so

even if the inequalities are strict, it is still possible for both parties to be minority parties or both

parties to be majority parties. Say that a district 𝐷 is competitive4 for 𝑖 if 𝑣 𝑗
𝑖
(𝐷) = 𝜇 (𝐷)

2
for some

𝑗 ∈ 𝑁 (in which case it will clearly be true for all 𝑗 ∈ 𝑁 , since there are only two parties), and let

𝑀𝑖 := {𝑚𝜇 (𝐷) | 𝐷 is a competitive district for 𝑖 and𝑚𝜇 (𝐷) ∈ Z}.

Since𝑀𝑖 is a nonempty set of integers that is bounded above (by𝑚), it contains a maximum value.

Let𝑚𝑖 ∈ Z≥0 be this maximum, and let 𝑋𝑖 be one of the districts 𝐷 attaining it, i.e.,𝑚𝜇 (𝑋𝑖 ) =𝑚𝑖 .

Note that𝑚𝑖 might be 0, in which case 𝑋𝑖 is empty.

Intuitively, 𝑋𝑖 is the most strategically critical portion of [0, 1] according to party 𝑖 , where both

parties have the same level of support, so either party could hope to win districts by gerrymandering.

Figure 3 shows the sets 𝑋1 and 𝑋2 for our running example (in this case they are both uniquely

defined, up to adding sets of measure zero). Since 𝑚 = 10, we have 𝑚1 = 𝑚𝜇 (𝑋1) = 7 and

𝑚2 =𝑚𝜇 (𝑋2) = 8.

The next five lemmas characterize the best and worst partitions for each party in terms of the𝑚𝑖

values, giving necessary and sufficient conditions for satisfying the geometric targets.

4
This technical definition of “competitive” in our model is completely different than the empirical definition discussed in

Section 3.
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Lemma 2.5. For any 𝑖, 𝑗 ∈ 𝑁 , let 𝑌 be a district such that one of

𝑣
𝑗

𝑖
(𝑌 ) − 𝜇 (𝑌 )

2

and 𝑣
𝑗

𝑖
( [0, 1]) − 1

2

is ≥ 0 and the other is ≤ 0. Then 𝜇 (𝑌 ) < 𝑚𝑖+1
𝑚

.

Proof. Suppose toward a contradiction that

𝜇 (𝑌 ) ≥ 𝑚𝑖 + 1

𝑚
.

Define a function 𝑔 : [0, 1] → [− 1

2
, 1
2
] by

𝑔(𝑡) := 𝑣
𝑗

𝑖
(𝑌 ∪ [0, 𝑡]) − 𝜇 (𝑌 ∪ [0, 𝑡])

2

.

Clearly, 𝑔 is continuous. Furthermore,

𝑔(0) = 𝑣
𝑗

𝑖
(𝑌 ) − 𝜇 (𝑌 )

2

,

𝑔(1) = 𝑣
𝑗

𝑖
( [0, 1]) − 𝜇 ( [0, 1])

2

= 𝑣
𝑗

𝑖
( [0, 1]) − 1

2

.

By assumption, one of these terms must be ≥ 0 and the other ≤ 0. Therefore, by the intermediate

value theorem, there exists 𝑡∗ ∈ [0, 1] such that 𝑔(𝑡∗) = 0. Letting 𝐷 := 𝑌 ∪ [0, 𝑡∗], we must have

that

𝑣
𝑗

𝑖
(𝐷) = 𝑔(𝑡∗) + 𝜇 (𝐷)

2

=
𝜇 (𝐷)
2

,

i.e., 𝐷 is competitive for 𝑖 . Since 𝑌 ⊆ 𝐷 ,

𝜇 (𝐷) ≥ 𝜇 (𝑌 ) ≥ 𝑚𝑖 + 1

𝑚
.

Thus, we may apply Lemma 2.3 to voter distribution function 𝑣
𝑗

𝑖
, with 𝑠 :=

𝑚𝑖+1
𝑚𝜇 (𝐷) ∈ [0, 1], to cut

out a district 𝐷1 ⊆ 𝐷 of measure

𝜇 (𝐷1) =
𝑚𝑖 + 1

𝑚𝜇 (𝐷) · 𝜇 (𝐷) =
𝑚𝑖 + 1

𝑚
.

Furthermore, observe that, since 𝐷 is competitive for 𝑖 , it follows from property (4) of Lemma 2.3

that 𝐷1 is competitive for 𝑖:

𝑣
𝑗

𝑖
(𝐷1) = 𝑠 · 𝑣 𝑗

𝑖
(𝐷)

= 𝑠 · 𝜇 (𝐷)
2

(because 𝐷 is competitive for 𝑖)

=
𝑚𝑖 + 1

𝑚𝜇 (𝐷) ·
𝜇 (𝐷)
2

=
𝑚𝑖 + 1

2𝑚

=
𝜇 (𝐷1)
2

.

This proves that𝑚𝑖 + 1 ∈ 𝑀𝑖 , contradicting the definition of𝑚𝑖 as the maximum element of𝑀𝑖 . □

Lemma 2.6. For any 𝑖, 𝑗 ∈ 𝑁 , if 𝑗 is a minority party according to 𝑖 , then:

min

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) = 0
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max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) =𝑚𝑖

Proof. Let 𝑗 ′ denote the party that is not 𝑗 . To prove the first equation, we apply Lemma 2.4 to

𝑣
𝑗

𝑖
, with 𝑠 := 1

𝑚
, to divide [0, 1] into𝑚 districts 𝐷1,𝐷2, . . . ,𝐷𝑚 of equal size

1

𝑚
. In each district 𝐷𝑘 ,

from property (4) of Lemma 2.4 and the fact that 𝑗 is a minority party according to 𝑖 ,

𝑣
𝑗

𝑖
(𝐷𝑘 ) =

1

𝑚
𝑣
𝑗

𝑖
( [0, 1]) ≤ 1

2𝑚

Therefore, if we break ties in favor of party 𝑗 ′, party 𝑗 will win none of these districts. Formally,

letting 𝑃 ′
:= {𝐷1,𝐷2, . . . ,𝐷𝑚} and 𝑇 ′(𝐷𝑘 ) := 𝑗 ′ for each 𝑘 ∈ [𝑚], we have that 𝑢

𝑗

𝑖
(𝑃 ′,𝑇 ′) = 0,

proving the first equation.

To prove the second equation, we apply Lemma 2.4 to 𝑣
𝑗

𝑖
, with 𝑠 := 1

𝑚𝑖
, to divide 𝑋𝑖 into 𝑚𝑖

districts 𝐷1,𝐷2, . . . ,𝐷𝑚𝑖
. Note that, by property (3) of Lemma 2.3, each district 𝐷𝑘 has size

𝜇 (𝐷𝑘 ) = 𝑠 · 𝜇 (𝑋𝑖 ) =
1

𝑚𝑖

· 𝑚𝑖

𝑚
=

1

𝑚
.

Furthermore, since 𝑋𝑖 is competitive for 𝑖 , it follows from property (4) of Lemma 2.4 that each 𝐷𝑘 is

competitive for 𝑖 . Let 𝑃 ′
consist of 𝐷1,𝐷2, . . . ,𝐷𝑚𝑖

, along with an arbitrary division of [0, 1] \ 𝑋𝑖 (the

closure of the complement of 𝑋𝑖 ) into𝑚 −𝑚𝑖 districts, and let 𝑇 ′(𝐷𝑘 ) := 𝑗 for each 𝑘 ∈ [𝑚𝑖 ], with
an arbitrary tie-breaking choice for all of the other districts. Since the 𝐷𝑘 districts are competitive

and ties are broken in favor of party 𝑗 , it follows that party 𝑗 will win each of them according to 𝑖 .

Therefore,

𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) ≥ 𝑚𝑖 ,

which proves that

max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) ≥ 𝑚𝑖 .

To prove the other direction, suppose toward a contradiction that, for some𝑚-partition (𝑃 ′,𝑇 ′)
of [0, 1], 𝑢 𝑗

𝑖
(𝑃 ′,𝑇 ′) ≥ 𝑚𝑖 + 1. Let 𝑌 ⊆ [0, 1] be the union of all districts won by 𝑗 according to 𝑖

under (𝑃 ′,𝑇 ′). Since there are at least𝑚𝑖 + 1 such districts, each of measure
1

𝑚
, we have

𝜇 (𝑌 ) ≥ 𝑚𝑖 + 1

𝑚
. (1)

However,

𝑣
𝑗

𝑖
(𝑌 ) − 𝜇 (𝑌 )

2

≥ 0

since party 𝑗 wins each of the districts comprising 𝑌 according to 𝑖 , and

𝑣
𝑗

𝑖
( [0, 1]) − 1

2

≤ 0

since party 𝑗 is a minority party according to 𝑖 . Therefore, by Lemma 2.5, we have

𝜇 (𝑌 ) < 𝑚𝑖 + 1

𝑚
,

contradicting inequality (1). □

Lemma 2.7. For any 𝑖, 𝑗 ∈ 𝑁 , if 𝑗 is a majority party according to 𝑖 , then:

min

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) =𝑚 −𝑚𝑖

max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) =𝑚
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Proof. Let 𝑗 ′ denote the party that is not 𝑗 . Note that 𝑗 ′ must be a minority party according to 𝑖 .

For any𝑚-partition (𝑃 ′,𝑇 ′) of [0, 1],

𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) + 𝑢 𝑗 ′

𝑖
(𝑃 ′,𝑇 ′) =𝑚.

Therefore,

min

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) = min

(𝑃 ′,𝑇 ′) ∈P (𝑚)

(
𝑚 − 𝑢

𝑗 ′

𝑖
(𝑃 ′,𝑇 ′)

)
=𝑚 − max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗 ′

𝑖
(𝑃 ′,𝑇 ′)

=𝑚 −𝑚𝑖 ,

where the final equality follows from Lemma 2.6 and the fact that 𝑗 ′ is a minority party according

to 𝑖 . By the same reasoning, we analogously derive

max

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗

𝑖
(𝑃 ′,𝑇 ′) = max

(𝑃 ′,𝑇 ′) ∈P (𝑚)

(
𝑚 − 𝑢

𝑗 ′

𝑖
(𝑃 ′,𝑇 ′)

)
=𝑚 − min

(𝑃 ′,𝑇 ′) ∈P (𝑚)
𝑢
𝑗 ′

𝑖
(𝑃 ′,𝑇 ′)

=𝑚 − 0

=𝑚. □

Lemma 2.8. For any 𝑖 ∈ 𝑁 and𝑚-partition (𝑃,𝑇 ) of [0, 1], if party 𝑖 is a minority party, then (𝑃,𝑇 )
satisfies the geometric target for 𝑖 if and only if 𝑖 wins at least

⌊
𝑚𝑖

2

⌋
districts under (𝑃,𝑇 ).

Proof. This follows immediately from specializing 𝑗 := 𝑖 in Lemma 2.6, since the geometric

target is for party 𝑖 to win at least ⌊
0 +𝑚𝑖

2

⌋
=

⌊𝑚𝑖

2

⌋
districts. □

Lemma 2.9. For any 𝑖 ∈ 𝑁 and𝑚-partition (𝑃,𝑇 ) of [0, 1], if party 𝑖 is a majority party, then (𝑃,𝑇 )
satisfies the geometric target for 𝑖 if and only if 𝑖 wins at least𝑚 −

⌈
𝑚𝑖

2

⌉
districts under (𝑃,𝑇 ).

Proof. This follows from specializing 𝑗 := 𝑖 in Lemma 2.7, since the geometric target is for party

𝑖 to win at least⌊
(𝑚 −𝑚𝑖 ) +𝑚

2

⌋
=

⌊
2𝑚 −𝑚𝑖

2

⌋
=

⌊
𝑚 − 𝑚𝑖

2

⌋
=𝑚 +

⌊−𝑚𝑖

2

⌋
=𝑚 −

⌈𝑚𝑖

2

⌉
districts. □

Lemma 2.10. For any 𝑖 ∈ 𝑁 and𝑚-partition (𝑃,𝑇 ) of [0, 1], if party 𝑖 wins at least
⌊
𝑚𝑖

2

⌋
competitive

districts under (𝑃,𝑇 ), then (𝑃,𝑇 ) satisfies the geometric target for 𝑖 .

Proof. Let 𝑗 denote the party that is not 𝑖 . If 𝑖 is a minority party, the result follows immediately

from Lemma 2.8. If 𝑖 is a majority party, then, by Lemma 2.9, the geometric target is for party

𝑖 to win at least𝑚 −
⌈
𝑚𝑖

2

⌉
districts. Suppose toward a contradiction that (𝑃,𝑇 ) did not meet the

geometric target for 𝑖 , i.e., 𝑖 wins strictly less than𝑚 −
⌈
𝑚𝑖

2

⌉
districts under (𝑃,𝑇 ). Let (𝑃 ′,𝑇 ′) be

the𝑚-partition of [0, 1] where 𝑃 ′
:= 𝑃 and 𝑇 ′(𝐷) := 𝑗 for all 𝐷 ∈ 𝑃 ′

. With the new tie-breaking

rule 𝑇 ′
, each of the

⌊
𝑚𝑖

2

⌋
competitive districts that party 𝑖 won under (𝑃,𝑇 ) are instead won by

party 𝑗 according to 𝑖 under (𝑃 ′,𝑇 ′). Thus, party 𝑖 wins
⌊
𝑚𝑖

2

⌋
fewer districts under (𝑃 ′,𝑇 ′), which

is strictly less than (
𝑚 −

⌈𝑚𝑖

2

⌉)
−
⌊𝑚𝑖

2

⌋
=𝑚 −𝑚𝑖
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Fig. 3. The same instance of the state-cutting problem from Figure 1, annotated with some of the sets
described in the proof of Theorem 2.2. Note that 𝑖 = 1 and 𝑗 = 2 since 𝜇 (𝑋1) > 𝜇 (𝑋2).

districts in total. This contradicts the minimum value from Lemma 2.7. □

We are now ready to prove Theorem 2.2. Roughly, the proof is via a cut-and-choose protocol

where the party 𝑗 with the smallest 𝑋 𝑗 set is the cutter, and the other party is the chooser. The

cutter divides 𝑋 𝑗 into two pieces such that they can meet their geometric target as long as they

control the redistricting over either piece. Thus, the chooser must cede control over one of these

two pieces in a way that still enables them to form enough districts from the remains to meet their

own geometric target. To decide which piece is better, there are two different cases, depending on

whether the chooser is a minority or a majority party. Here we will only prove the minority case,

deferring the more complicated majority case to Appendix B.

Proof of Theorem 2.2. Choose 𝑖, 𝑗 ∈ 𝑁 = {1, 2} so that 𝑖 ≠ 𝑗 and𝑚𝑖 ≥ 𝑚 𝑗 . Party 𝑗 will be the

cutter, and party 𝑖 will be the chooser. We first apply Lemma 2.3 to voter distribution function 𝑣
𝑗

𝑗
,

on district 𝑋 𝑗 , with 𝑠 :=
1

2
, obtaining districts 𝐷1 and 𝐷2 satisfying the four properties. See Figure 3

for an example of one valid choice of 𝐷1 and 𝐷2. Note that, for each 𝑘 ∈ {1, 2}, from property (3) of

Lemma 2.3 we have

𝜇 (𝐷𝑘 ) =
𝜇 (𝑋 𝑗 )
2

=
𝑚 𝑗

2𝑚
, (2)

while from property (4), 𝐷𝑘 is competitive for 𝑗 since 𝑋 𝑗 is.

We claim that, for any 𝑘 𝑗 ∈ {1, 2}, it is possible to create an𝑚-partition of a subset of 𝐷𝑘 𝑗
such

that, no matter how this partition is extended into an𝑚-partition of [0, 1], the geometric target for

party 𝑗 is satisfied.
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To prove this, we apply Lemma 2.4, to 𝑣
𝑗

𝑗
, with 𝑠 := 2

𝑚 𝑗
, to cut

⌊𝑚 𝑗

2

⌋
districts

𝑃𝑘 𝑗
:=

{
𝐸1, 𝐸2, . . . , 𝐸

⌊
𝑚𝑗

2

⌋ }
from 𝐷𝑘 𝑗

. From property (3) of Lemma 2.4, for each 𝐸𝑘 district,

𝜇 (𝐸𝑘 ) = 𝑠𝜇 (𝐷𝑘 𝑗
)

=
2

𝑚 𝑗

·
𝑚 𝑗

2𝑚
(from equation (2))

=
1

𝑚
,

and, from property (4), each of these districts is competitive for 𝑗 since 𝐷𝑘 𝑗
was. Thus, defining

the tie-breaker over each 𝐸𝑘 district by 𝑇𝑘 𝑗
(𝐸𝑘 ) := 𝑗 ensures that party 𝑗 wins all of these

⌊𝑚 𝑗

2

⌋
competitive districts under (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
), so any extension of (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
) satisfies the geometric target

for 𝑗 by Lemma 2.10.

It thus remains to establish that, for some 𝑘 𝑗 ∈ {1, 2}, we can extend (𝑃𝑘 𝑗
,𝑇𝑘 𝑗

) to an𝑚-partition

of [0, 1] that satisfies the geometric target for party 𝑖 . There are two cases, depending on whether

party 𝑖 is a minority or majority party (according to 𝑖).

Suppose 𝑖 is a minority party, as is the case in Figure 3. One plausible idea is to choose the 𝑘 𝑗
making 𝐷𝑘 𝑗

∩ 𝑋𝑖 as small as possible, so that party 𝑖 still retains enough control over 𝑋𝑖 to meet

their geometric target. However, as Figure 3 illustrates, this strategy does not always work. In this

example, 𝜇 (𝐷1 ∩ 𝑋𝑖 ) < 𝜇 (𝐷2 ∩ 𝑋𝑖 ), so we would presume to pick 𝑘 𝑗 = 1. Since 𝐷1 happens to be

competitive for party 𝑖 , it can be partitioned such that party 𝑖 wins no districts, and party 𝑖 can

take at most 3 districts from the rest of [0, 1], making it impossible to reach their geometric target

of

⌊
𝑚𝑖

2

⌋
= 4 districts (by Lemma 2.8). Thus, we must more carefully choose 𝑘 𝑗 to ensure that party

𝑖 still has a majority of support within 𝑋𝑖 \ 𝐷𝑘 𝑗
, which, in this example, will be 𝑘 𝑗 = 2.

Formally, from equation (2) it follows that, for all 𝑘 ∈ {1, 2},

𝜇 (𝐷𝑘 ∩ 𝑋𝑖 ) ≤ 𝜇 (𝐷𝑘 ) =
𝑚 𝑗

2𝑚
≤ 𝑚𝑖

2𝑚
=

𝜇 (𝑋𝑖 )
2

.

Therefore, it is possible to enlarge 𝐷1 ∩ 𝑋𝑖 and 𝐷2 ∩ 𝑋𝑖 into districts 𝐷 ′
1
, 𝐷 ′

2
⊆ 𝑋𝑖 that exactly

partition 𝑋𝑖 (ignoring overlapping endpoints of measure zero), both having equal measure

𝜇 (𝐷 ′
𝑘
) = 𝑚𝑖

2𝑚
(3)

(see Figure 3 for an example of a valid choice of 𝐷 ′
1
and 𝐷 ′

2
).

Since 𝑋𝑖 is competitive for 𝑖 ,

0 = 𝑣𝑖𝑖 (𝑋𝑖 ) −
𝜇 (𝑋𝑖 )
2

= 𝑣𝑖𝑖 (𝐷 ′
1
) + 𝑣𝑖𝑖 (𝐷 ′

2
) − 𝑚𝑖

2𝑚
=

(
𝑣𝑖𝑖 (𝐷 ′

1
) − 𝑚𝑖

4𝑚

)
+
(
𝑣𝑖𝑖 (𝐷 ′

2
) − 𝑚𝑖

4𝑚

)
.

Therefore, the two terms in parentheses cannot both be negative. Let 𝑘𝑖 ∈ {1, 2} be such that

𝑣𝑖𝑖 (𝐷 ′
𝑘𝑖
) ≥ 𝑚𝑖

4𝑚
, (4)

and let 𝑘 𝑗 ∈ {1, 2} be the other index, so 𝑘𝑖 ≠ 𝑘 𝑗 (in Figure 3, 𝑘𝑖 = 1 and 𝑘 𝑗 = 2). We construct an

𝑚-partition (𝑃 ′
𝑘𝑖
,𝑇 ′

𝑘𝑖
) by applying Lemma 2.4, to 𝑣𝑖𝑖 , with 𝑠 :=

2

𝑚𝑖
, to cut

⌊
𝑚𝑖

2

⌋
districts

𝑃 ′
𝑘𝑖
:=

{
𝐹1,𝐹2, . . . ,𝐹⌊𝑚𝑖

2
⌋
}
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Fig. 4. The final 10-partition meeting the geometric targets of both parties, with districts numbered in the
order they are constructed in the proof of Theorem 2.2. The red districts 1-3 come from (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
), so have

ties broken in favor of party 𝑗 = 2, while the blue districts 4-7 come from (𝑃 ′
𝑘𝑖
,𝑇 ′
𝑘𝑖
), so have ties broken in

favor of party 𝑖 = 1 (though in this case, it does not matter, since districts 4-7 are not competitive). The white
districts 8-10 could be re-partitioned arbitrarily, and have ties broken in any way. Party 𝑖 = 1 expects to win
districts 1, 4, 5, 6, and 7, exceeding their geometric target of four districts, while party 𝑗 = 2 expects to win all
except district 5, exceeding their geometric target of six districts.

from 𝐷 ′
𝑘𝑖
. According to property (3), each district 𝐹𝑘 does indeed have the target size of

𝜇 (𝐹𝑘 ) = 𝑠𝜇 (𝐷 ′
𝑘𝑖
)

=
2

𝑚𝑖

· 𝑚𝑖

2𝑚
(from equation (3))

=
1

𝑚
.

Furthermore, from property (4), each district 𝐹𝑘 has party support

𝑣𝑖𝑖 (𝐹𝑘 ) = 𝑠 · 𝑣𝑖𝑖 (𝐷 ′
𝑘𝑖
)

=
2

𝑚𝑖

· 𝑣𝑖𝑖 (𝐷 ′
𝑘𝑖
)

≥ 2

𝑚𝑖

· 𝑚𝑖

4𝑚
(from inequality (4))

=
1

2𝑚
.
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We define the tie-breaker over each 𝐹𝑘 district by 𝑇 ′
𝑘𝑖
(𝐹𝑘 ) := 𝑖 , ensuring that party 𝑖 wins all

of these

⌊
𝑚𝑖

2

⌋
districts. To form a GT partition for [0, 1], we take all districts and tie-breakers

from (𝑃 ′
𝑘𝑖
,𝑇 ′

𝑘𝑖
) and (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
) (which are necessarily disjoint since 𝐷 ′

𝑘𝑖
and 𝐷𝑘 𝑗

are), dividing the

remainder of [0, 1] arbitrarily. Since party 𝑖 is the minority party and wins at least

⌊
𝑚𝑖

2

⌋
districts,

the geometric target for party 𝑖 is satisfied by Lemma 2.8. Figure 4 shows the final 10-partition for

our running example.

The case where 𝑖 is a majority party is more involved since it is no longer sufficient for party 𝑖 to

assume they lose all districts in either 𝐷1 or 𝐷2. It may happen that both choices of 𝑘 𝑗 to lead to a

situation where it is impossible to form enough districts from [0, 1] \ 𝐷𝑘 𝑗
to meet the geometric

target for party 𝑖 . This is because both 𝐷1 and 𝐷2 could be “packed” districts, in which party 𝑖 wins

by a large margin, wasting their advantage. However, when this happens, there is a strategy that

party 𝑖 can use to respond: given a choice of 𝑘 𝑗 , party 𝑖 forms a packed district in [0, 1] \ 𝐷𝑘 𝑗
that

party 𝑗 wins for each packed district in 𝐷𝑘 𝑗
that party 𝑖 wins. We argue that, for some choice of

𝑘 𝑗 , party 𝑖 will be left with majority over the remainder of the interval after forming these packed

districts, so will be able to win all remaining districts. Since the wins in packed districts exactly

cancel each other out, this implies that party 𝑖 meets their geometric target. See Appendix B for the

details. □

3 GT PARTITIONS IN PRACTICE
Having established the existence of GT partitions in an abstract model, now we empirically in-

vestigate whether GT partitions exist in practice and what they look like. In the spirit of the price
of fairness [2, 6], we are particularly interested in the trade-off between satisfying the geometric

target and various optimization objectives; that is, we investigate to what degree GT partitions are

inferior to those that optimize traditional measures of quality.

A first challenge, though, is computation. Ideally, we would like to exactly optimize for the

number of districts each party can win and use these optimal solutions to compute the geometric

targets. Unfortunately, state-of-the-art machinery does not support exact optimization over the

entire space of feasible partitions at the scale of real-world instances. We therefore rely on a heuristic

evaluation of the extreme partitions; specifically, we use the GerryChain software developed by

the Voting Rights Data Institute [46] to facilitate the running of a Markov chain which generates

thousands of valid partitions. The Markov chain starts from a graph representation of the state in

which every node represents an indivisible geographic region (for example, a precinct or census

block), along with properties associated with that region, including population, area, perimeter, and

the number of Democratic and Republican votes cast in several recent elections. State transitions

in the Markov chain happen through recombination moves [12] which merge two adjacent districts

before randomly splitting them again. Before a move to a new partition is accepted, it is verified that

the new partition is contiguous and satisfies population equality to within 2% (with the exception

of Virginia, where a bound of 5% is used). The precinct geometries and election data used in these

experiments were prepared by the Metric Geometry and Gerrymandering Group and are publicly

available [30].

We generate 50 000 valid partitions
5
(of which the first 1 000 are discarded) in six U.S. states:

Georgia (GA), Massachusetts (MA), North Carolina (NC), Pennsylvania (PA), Texas (TX), and

Virginia (VA). At every partition found by the Markov chain we keep track of three metrics:

• The efficiency gap, as defined in Section 1.3;

5
This relatively small number of steps in the Markov chain is due to the fact that we are using recombination moves. If

smaller, more local moves were used to traverse the space of partitions, several million would have been required [29].
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GA MA NC PA TX VA
# Districts 14 9 13 18 36 11

Democratic vote share (%) 47.6 64.7 48.1 49.6 45.3 52.5

Democratic GT 4 9 5 7 15 7

Republican GT 9 0 8 11 21 4

Competitive districts 7 2 8 8 12 (13) 6

Efficiency gap (%) 6.0 (0*) 20.7 4.1 (0*) 5.4 (1.2) 0.1 (0*) 4.2 (0*)

Compactness (PP) 0.214 0.354 0.262 0.222 (0.225) 0.194 (0.2) 0.25

Table 1. For each state, its number of Congressional districts, the normalized Democratic vote share in the
2016 presidential election (calculated from the numbers published in the New York Times by discarding
votes for third-party candidates), the Democratic and Republican geometric targets, and for each of three
optimization objectives, the optimal value subject to satisfying the geometric target and the optimal value
without this constraint (in parentheses, where different). Absolute efficiency gaps of 0∗ do not exceed 0.05%.

• The number of competitive districts, defined to be those districts in which the majority party

wins no more than 54% support; and

• Compactness as measured by the Polsby-Popper (PP) score [36], computed as the ratio of the

area of a district to the area of a circle with the same perimeter length.

Note that a smaller efficiency gap is better— a threshold of 8% is commonly accepted [44]—while

we prefer a larger number of competitive districts and a larger Polsby-Popper score.

Along with these metrics we compute the number of districts won by each party according to

their belief of voter preferences. This allows us to calculate the geometric targets and measure the

price of fairness.

3.1 When Parties Agree About Voter Distributions
First, we consider the case where both parties agree about the distribution of voters. In this case

we use the votes cast in the 2016 presidential election to evaluate the number of districts won by

each party in every partition. In all of our experiments, we find that GT partitions exist. Table 1

reports the best observed values for each metric among GT partitions, as well as the optimal value

observed among all partitions (when different). Geometric targets are computed by taking the

average (rounded down) of the minimum and maximum number of districts won by a party in any

partition.

We see in Table 1 that the cost of enforcing the geometric target is very low. There is only one

instance of a state (TX) in which this constraint leads to a decrease in the number of competitive

districts compared to the maximum competitive districts observed, while the decrease in compact-

ness is never more than 3%. The increase in efficiency gap is larger (4-6%); however, we observe

GT partitions meeting the recommended efficiency gap threshold of 8% in every state (except MA,

where meeting the threshold is impossible).

We did not explicitly consider optimizing multiple objectives simultaneously; nevertheless, we

observe several GT partitions that outperform the currently implemented partitions in these states

on all three axes. Figure 5 shows two such GT partitions, one in Virginia and one in North Carolina.

The Virginian partition has three competitive districts (compared to two in their 2012 plan), an

absolute efficiency gap of 6.6% (compared to 10.9%) and a compactness score of 0.185 (compared

to 0.158). Similarly, the partition of North Carolina has three competitive districts (compared to

0 in their 2016 map), an efficiency gap of 7.1% (compared to 22.2%) and a Polsby-Popper score of
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Fig. 5. GT partitions in Virginia (left) and North Carolina (right) which outperform their implemented plans
in terms of competitiveness, efficiency gap and compactness.

0.262 (compared to 0.252). The implemented plans are not only worse according to all three of our

metrics, they also do not satisfy the geometric targets.

3.2 When Parties Disagree About Voter Distributions
The core strength of our theoretical result is that it does not require parties to agree on how voters

will vote, as geometric targets can be guaranteed with respect to separate beliefs for each party.

These divergent beliefs may be due to noisy data collection, polling errors or strategic manipulation.

To simulate such settings, we consistently let one of the parties report the true votes cast in

the 2016 Presidential election, which we treat as the ground truth for the purpose of computing

competitiveness and efficiency gaps. The other party’s beliefs are allowed to deviate in several

structured ways. First, we consider the case where the other party expects the votes to reflect

the 2012 Presidential election.
6
Second, in an attempt to simulate possible strategic behavior, we

consider what happens when the party uniformly under or over-reports their share of the votes

in every region by 𝑥%, for 𝑥 ∈ 𝑋 = {5, 10, . . . , 50}. Finally, we consider the case where a party
randomly inflates or deflates their share of the votes in each region (independently) by 𝑦%, with

𝑦 ∼ Uniform(−𝑥, 𝑥), 𝑥 ∈ 𝑋 .

As in the case where parties agree, in all of our experiments, we find that GT partitions exist.

Figure 6 compares the most competitive and compact GT partitions observed in Texas for each of

the deviations we consider. In most of the scenarios, enforcing the geometric target led to the loss

of at most one competitive district; the largest number of competitive districts lost was 3. In terms

of compactness (measured by the Polsby-Popper score) the largest loss was when the Democratic

party deflated their reported beliefs uniformly by 25%, leading to a GT partition with a compactness

score of 0.183 compared to the optimum of 0.200. The same trends held in the setting where the

alternative voter distribution is from a different election. The effect of enforcing the geometric

targets on competitiveness and compactness are similar in the other states, and we observed GT

partitions meeting the efficiency gap threshold everywhere (with the obvious exception of MA).

The full results from all experiments appear in Appendix C.

Together these results tell a compelling story: not only is it easy to find GT partitions, but

restricting our search to GT partitions has little impact on the quality of the partition according to

traditional metrics.

4 DISCUSSION
Our suggested redistricting approach relies on optimization subject to a fairness constraint. The

fact that our fairness notion is readily satisfied— there are likely thousands of GT partitions for any

state— creates the opportunity to use it in isolation should optimization-based approaches prove

6
With the exception of Georgia and Virginia. Due to the availability of data we use election results from a 2016 senate race

as the alternative voter distribution in Georgia, and the 2016 congressional races in Virginia.
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Fig. 6. The largest number of competitive districts (left panel) and degree of compactness (right) of the best
GT partitions observed in Texas when parties inflate or deflate their reported voter distribution by up to
50%. The black dotted line represents the maximum value observed among any partition. The color of the
bar represents which party deviates. The golden bars report the experiment where neither party deviates,
which is also recorded in the TX column of Table 1 (so in each panel, all four golden bars represent the same
experiment).

impossible, either because of political objections or legislative difficulties. In such cases simply

requiring that partitions meet the geometric target prevents the most extreme partisan outcomes

yet allows legislators to retain much of the power and freedom that comes with the ability to decide

where to draw district boundaries.

We have argued that, despite its simplicity, our theoretical model captures some of the key diffi-

culties of practical redistricting. Nevertheless, it could be made richer by incorporating geometric

aspects of the redistricting problem, so that the price of fairness for compactness could be formally

analyzed. One natural metric for compactness is to count the number of disjoint intervals per

district. In the worst case, GT partitions may require an arbitrarily large number of intervals in

some districts. Furthermore, imposing geometric constraints on the set of feasible partitions, such

as “there must be at most two intervals per district” can lead to situations where GT partitions do

not exist.
7
Perhaps there is a 2D adaptation of our model under which geometric constraints are

still compatible with the geometric target.

A shortcoming of our approach is the issue of computation. A specific problem is that using

the minimum and maximum number of seats won by both parties across sampled partitions to

compute the geometric targets does not necessarily lead to the true value: in theory, there could be

more extreme partitions that were not observed. However, this seems highly unlikely in practice.

Regardless, we envision a process by which each party submits what it believes to be its best

partition; the partitions submitted by the two parties can then be used to compute the geometric

target of each party. Under such a process, neither party would have a right to complain that it

was disadvantaged in the computation of the geometric target. Note that when the two parties

agree on voter distributions, the proof of Theorem 2.1 goes through and shows the feasibility of

this modification of the geometric target in our model; it is an interesting open question whether

the proof of Theorem 2.2 for the general case can be similarly extended.

Computation of GT partitions can also be incorporated into our theoretical model. We suspect

that Robertson-Webb [39] evaluation/cut queries are insufficient to compute GT partitions, since

7
If the two parties agree on voter distributions, such counterexamples cannot occur, since the proof of Theorem 2.1 constructs

an𝑚-partition with no more intervals per district than the two extreme𝑚-partitions.
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it seems impossible to even compute the best and worst𝑚-partitions for each party using this

information, and thus it may be impossible to compute the 𝑋𝑖 sets, which form the starting point

of our protocol. Is there a richer query model under which it is possible to compute a GT partition

using a finite number of queries?

Another limitation of our work is that it only applies to the case of two parties. The first obstacle

to extending beyond two parties is conceptual: it is unclear whether the geometric target has a

natural analog in that setting. We do not view this as a major issue, though, as our work is directly

motivated by the process of redistricting in the United States, which essentially has a two-party

system.

These shortcomings notwithstanding, our results show that it is possible and practical to guar-

antee fairness even in a climate of extreme partisanship. This is an insight that, we believe, could

prove invaluable to state legislatures and independent redistricting commissions as they prepare

for the next round of redistricting based on the 2020 census.
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A PROOF OF LEMMA 2.3
Let 𝑓 denote the density function of 𝑣 . Without loss of generality, we may assume that 𝐷 = [0, 𝑡]
where 𝑡 = 𝜇 (𝐷), for otherwise we could simply rearrange the finite number of intervals comprising

𝐷 so that this is the case and adapt the proof accordingly. Define functions 𝑔 : [0, 2𝑡] → [0, 1] by

𝑔(𝑥) :=
{
𝑓 (𝑥) if 𝑥 ≤ 𝑡

𝑓 (𝑥 − 𝑡) if 𝑥 > 𝑡

and ℎ : [0, 𝑡] → [0, 1] by

ℎ(𝑥) :=
∫ 𝑥+𝑠𝑡

𝑥

𝑔(𝑦)𝑑𝑦.

Intuitively, for any 𝑥 ∈ [0, 𝑡], ℎ(𝑥) is the value of a piece of measure 𝑠𝑡 that begins at 𝑥 , wrapping

around if necessary. Observe that the average value of ℎ over [0, 𝑡] is

1

𝑡

∫ 𝑡

0

ℎ(𝑥)𝑑𝑥 =
1

𝑡

∫ 𝑡

0

∫ 𝑥+𝑠𝑡

𝑥

𝑔(𝑦)𝑑𝑦𝑑𝑥

github.com/mggg-states.
github.com/mggg/GerryChain.
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=
1

𝑡

∫ 𝑡

0

∫ 𝑠𝑡

0

𝑔(𝑥 + 𝑦)𝑑𝑦𝑑𝑥

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡

0

𝑔(𝑥 + 𝑦)𝑑𝑥
)
𝑑𝑦

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡+𝑦

𝑦

𝑔(𝑥)𝑑𝑥
)
𝑑𝑦

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡

𝑦

𝑔(𝑥)𝑑𝑥 +
∫ 𝑡+𝑦

𝑡

𝑔(𝑥)𝑑𝑥
)
𝑑𝑦

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡

𝑦

𝑔(𝑥)𝑑𝑥 +
∫ 𝑦

0

𝑔(𝑥 + 𝑡)𝑑𝑥
)
𝑑𝑦

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡

𝑦

𝑓 (𝑥)𝑑𝑥 +
∫ 𝑦

0

𝑓 (𝑥)𝑑𝑥
)
𝑑𝑦

=
1

𝑡

∫ 𝑠𝑡

0

(∫ 𝑡

0

𝑓 (𝑥)𝑑𝑥
)
𝑑𝑦

=
1

𝑡
(𝑠𝑡)

∫ 𝑡

0

𝑓 (𝑥)𝑑𝑥

= 𝑠𝑣 (𝐷).
Since ℎ is clearly continuous, by the intermediate value theorem there must exist some 𝑥∗ ∈ [0, 𝑡]
at which ℎ attains its average value. If 𝑥∗ + 𝑠𝑡 ≤ 𝑡 , then we define

𝐷1 := [𝑥∗, 𝑥∗ + 𝑠𝑡] .
In this case,

𝜇 (𝐷1) = 𝑠𝑡 = 𝑠𝜇 (𝐷)
and

𝑣 (𝐷1) =
∫ 𝑥∗+𝑠𝑡

𝑥∗
𝑓 (𝑦)𝑑𝑦 =

∫ 𝑥∗+𝑠𝑡

𝑥∗
𝑔(𝑦)𝑑𝑦 = ℎ(𝑥∗) = 𝑠𝑣 (𝐷).

If 𝑥∗ + 𝑠𝑡 > 𝑡 , we instead define

𝐷1 := [𝑥∗, 𝑡] ∪ [0, 𝑥∗ + 𝑠𝑡 − 𝑡] .
Note that these intervals are both contained within 𝐷 = [0, 𝑡] and are non-overlapping since 𝑠 ≤ 1

(except possibly at the point 𝑥∗ in the case where 𝑠 = 1). Therefore,

𝜇 (𝐷1) = (𝑡 − 𝑥∗) + (𝑥∗ + 𝑠𝑡 − 𝑡) = 𝑠𝑡 = 𝑠𝜇 (𝐷)
and

𝑣 (𝐷1) =
∫ 𝑡

𝑥∗
𝑓 (𝑦)𝑑𝑦 +

∫ 𝑥∗+𝑠𝑡−𝑡

0

𝑓 (𝑦)𝑑𝑦

=

∫ 𝑡

𝑥∗
𝑓 (𝑦)𝑑𝑦 +

∫ 𝑥∗+𝑠𝑡

𝑡

𝑓 (𝑦 − 𝑡)𝑑𝑦

=

∫ 𝑡

𝑥∗
𝑔(𝑦)𝑑𝑦 +

∫ 𝑥∗+𝑠𝑡

𝑡

𝑔(𝑦)𝑑𝑦

=

∫ 𝑥∗+𝑠𝑡

𝑥∗
𝑔(𝑦)𝑑𝑦

= ℎ(𝑥∗)
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= 𝑠𝑣 (𝐷).
Thus, in either case, we have found a district 𝐷1 satisfying properties (3) and (4). Letting

𝐷2 := 𝐷 \ 𝐷1

(the closure of 𝐷 \ 𝐷1), properties (1) and (2) are automatically satisfied. Furthermore,

𝜇 (𝐷2) = 𝜇 (𝐷) − 𝜇 (𝐷1) = 𝜇 (𝐷) − 𝑠𝜇 (𝐷) = (1 − 𝑠)𝜇 (𝐷)
and

𝑣 (𝐷2) = 𝑣 (𝐷) − 𝑣 (𝐷1) = 𝑣 (𝐷) − 𝑠𝑣 (𝐷) = (1 − 𝑠)𝑣 (𝐷),
so 𝐷2 satisfies properties (3) and (4) as well. □

B PROOF OF THEOREM 2.2: MAJORITY CASE
Suppose 𝑖 is a majority party. By Lemma 2.9, to meet the geometric target for party 𝑖 we must find

a partition where party 𝑖 wins at least𝑚 −
⌈
𝑚𝑖

2

⌉
districts. We first extend (𝑃1,𝑇1) and (𝑃2,𝑇2) by

adding disjoint districts of size
1

𝑚
to (𝑃1,𝑇1) and (𝑃2,𝑇2), in alternation, until the total measure

covered by 𝑃1∪𝑃2 is exactly 𝜇 (𝑋𝑖 ) = 𝑚𝑖

𝑚
(this is possible since𝑚 𝑗 ≤ 𝑚𝑖 ). Call the resulting partitions

(𝑃 ′
1
,𝑇 ′

1
) and (𝑃 ′

2
,𝑇 ′

2
). For each 𝑘 ∈ {1, 2}, let 𝐴𝑘 , 𝐵𝑘 ⊆ [0, 1] be comprised of all districts that party

𝑖 wins/loses under (𝑃 ′
𝑘
,𝑇 ′

𝑘
), respectively. Note that 𝐴1, 𝐴2, 𝐵1, and 𝐵2 are pairwise disjoint, have

measures that are integer multiples of
1

𝑚
, and for each 𝑘 ∈ {1, 2},

𝜇 (𝐴𝑘 ∪ 𝐵𝑘 ) ≤
⌈
𝑚𝑖

2

⌉
𝑚

. (5)

(This follows since both partitions started with the same number of districts and alternately grew

one district at a time until reaching𝑚𝑖 districts, so the maximum number of districts either partition

could have at the end is

⌈
𝑚𝑖

2

⌉
.) Let 𝐶 be the remaining part of the interval,

𝐶 := [0, 1] \ (𝐴1 ∪𝐴2 ∪ 𝐵1 ∪ 𝐵2) .
There are a few different sub-cases to consider, depending on the advantage of party 𝑖 in each of

these five districts. First suppose that, for some 𝑘 𝑗 ∈ {1, 2},

𝑣𝑖𝑖 (𝐴𝑘 𝑗
∪ 𝐵𝑘 𝑗

) ≤
𝜇 (𝐴𝑘 𝑗

∪ 𝐵𝑘 𝑗
)

2

. (6)

Then it must be the case that

𝑣𝑖𝑖 ( [0, 1] \ (𝐴𝑘 𝑗
∪ 𝐵𝑘 𝑗

)) ≥
𝜇 ( [0, 1] \ (𝐴𝑘 𝑗

∪ 𝐵𝑘 𝑗
))

2

, (7)

for otherwise, summing (6) with the negation of (7), we would have that 𝑣𝑖𝑖 ( [0, 1]) < 1

2
, contradicting

the assumption that 𝑖 is a majority party. We apply Lemma 2.4 to divide [0, 1] \ (𝐴𝑘 𝑗
∪ 𝐵𝑘 𝑗

) into
𝑚 −

⌈
𝑚𝑖

2

⌉
districts of size

1

𝑚
. Property (4) of Lemma 2.4 and inequality (7) imply that party 𝑖 will

win all of these districts (as long as we break ties in favor of 𝑖). Thus, using these disjoint districts

to extend (𝑃 ′
𝑘 𝑗
,𝑇 ′

𝑘 𝑗
) (which is itself an extension of (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
)), by Lemma 2.9, we have met the

geometric target for party 𝑖 .

Now suppose instead that, for all 𝑘 ∈ {1, 2},

𝑣𝑖𝑖 (𝐴𝑘 ∪ 𝐵𝑘 ) ≥
𝜇 (𝐴𝑘 ∪ 𝐵𝑘 )

2

. (8)

If, in addition, we have

𝑣𝑖𝑖 (𝐶) ≥
𝜇 (𝐶)
2

,
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then inequality (7) clearly still holds for either choice of 𝑘 𝑗 , so the same argument goes through.

Thus, assume

𝑣𝑖𝑖 (𝐶) ≤
𝜇 (𝐶)
2

. (9)

We claim that

𝜇 (𝐶) ≤ 𝜇 (𝐴1) + 𝜇 (𝐴2). (10)

Suppose toward a contradiction that (10) did not hold. Since all three measures are integer multiples

of
1

𝑚
, this means that

𝜇 (𝐶) ≥ 𝜇 (𝐴1) + 𝜇 (𝐴2) +
1

𝑚
. (11)

We proceed similarly as in the last part of the proof of Lemma 2.6. Letting 𝑌 := 𝐵1 ∪𝐵2 ∪𝐶 , we have
𝜇 (𝑌 ) = 𝜇 (𝐵1) + 𝜇 (𝐵2) + 𝜇 (𝐶)

≥ 𝜇 (𝐴1) + 𝜇 (𝐴2) + 𝜇 (𝐵1) + 𝜇 (𝐵2) +
1

𝑚
(from inequality (11))

=
𝑚𝑖

𝑚
+ 1

𝑚
(by the definitions of (𝑃 ′

1
,𝑇 ′

1
) and (𝑃 ′

2
,𝑇 ′

2
))

=
𝑚𝑖 + 1

𝑚
. (12)

However,

𝑣𝑖𝑖 (𝑌 ) −
𝜇 (𝑌 )
2

≤ 0

from inequality (9) and the fact that party 𝑖 loses all districts in 𝐵1 and 𝐵2, and

𝑣𝑖𝑖 ( [0, 1]) −
1

2

≥ 0

since party 𝑖 is a majority party. Therefore, by Lemma 2.5, we have

𝜇 (𝑌 ) < 𝑚𝑖 + 1

𝑚
,

contradicting inequality (12).

Thus, we have shown that inequality (10) holds. It is therefore possible to subdivide 𝐶 into two

districts 𝐶1 and 𝐶2 such that, for each 𝑘 ∈ {1, 2},
𝜇 (𝐶𝑘 ) ≤ 𝜇 (𝐴𝑘 ). (13)

Since 𝑖 is a majority party, and 𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2, and 𝐶2 form a partition of [0, 1] into districts that

only overlap at endpoints,

0 ≤ 𝑣𝑖𝑖 ( [0, 1]) −
𝜇 ( [0, 1])

2

=

(
𝑣𝑖𝑖 (𝐴1 ∪ 𝐵1 ∪𝐶1) −

𝜇 (𝐴1 ∪ 𝐵1 ∪𝐶1)
2

)
+
(
𝑣𝑖𝑖 (𝐴2 ∪ 𝐵2 ∪𝐶2) −

𝜇 (𝐴2 ∪ 𝐵2 ∪𝐶2)
2

)
,

so the two terms in parentheses cannot both be negative. Let 𝑘𝑖 ∈ {1, 2} be such that

𝑣𝑖𝑖 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 ) ≥
𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 )

2

and let 𝑘 𝑗 ∈ {1, 2} be the other index, so 𝑘𝑖 ≠ 𝑘 𝑗 . As was done in the case where party 𝑖 was the

minority party, we extend (𝑃 ′
𝑘 𝑗
,𝑇 ′

𝑘 𝑗
) (which is itself an extension of (𝑃𝑘 𝑗

,𝑇𝑘 𝑗
)) by applying Lemma

2.4 to 𝑣𝑖𝑖 with

𝑠 :=
1

𝑚𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 )
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to cut

⌊
𝑚𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 )

⌋
districts from 𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 , which we can ensure are all won by

party 𝑖 by breaking ties in favor of party 𝑖 . Note that these districts clearly have the target size
1

𝑚

from property (3) of Lemma 2.4. The remainder of [0, 1] can be partitioned arbitrarily; denote by

(𝑃,𝑇 ) the resulting𝑚-partition of [0, 1]. Recall that party 𝑖 also wins all𝑚𝜇 (𝐴𝑘 𝑗
) districts from 𝐴𝑘 𝑗

.

Thus, the total number of districts they win is

𝑢𝑖𝑖 (𝑃,𝑇 ) ≥
⌊
𝑚𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 )

⌋
+𝑚𝜇 (𝐴𝑘 𝑗

)
=𝑚𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 ) +𝑚𝜇 (𝐴𝑘 𝑗

)
(since 𝜇 (𝐴𝑘𝑖 ∪ 𝐵𝑘𝑖 ∪𝐶𝑘𝑖 ) is an integer multiple of 1/𝑚)

=𝑚

(
𝜇 (𝐴𝑘𝑖 ) + 𝜇 (𝐵𝑘𝑖 ) + 𝜇 (𝐶𝑘𝑖 ) + 𝜇 (𝐴𝑘 𝑗

)
)

≥ 𝑚

(
𝜇 (𝐴𝑘𝑖 ) + 𝜇 (𝐵𝑘𝑖 ) + 𝜇 (𝐶𝑘𝑖 ) + 𝜇 (𝐶𝑘 𝑗

)
)

(from inequality (13))

=𝑚

(
1 − 𝜇 (𝐴𝑘 𝑗

) − 𝜇 (𝐵𝑘 𝑗
)
)

=𝑚 −𝑚𝜇 (𝐴𝑘 𝑗
∪ 𝐵𝑘 𝑗

)

≥ 𝑚 −
⌈𝑚𝑖

2

⌉
(from inequality (5)).

Hence, by Lemma 2.9, the geometric target of party 𝑖 is satisfied. □

C EMPIRICAL RESULTS OMITTED FROM SECTION 3.2
In Section 3.2 we report the effect of enforcing the geometric target constraint on competitiveness

and compactness in Texas. Here we report the full results for the range of deviations considered.
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Georgia Massachusetts

North Carolina Pennsylvania

Texas Virginia

Fig. 7. The largest number of competitive districts among GT partitions compared to the maximum observed
(black dotted line) for each of the deviations considered. The color of the bar represents which party deviates.
The golden bar reports the case when neither party deviates.
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Georgia Massachusetts

North Carolina Pennsylvania

Texas Virginia

Fig. 8. The smallest absolute efficiency gap among GT partitions compared to the best observed efficiency
gap (black dotted line), and a threshold of 8% (green dotted line). The color of the bar represents which party
deviates. The golden bar reports the case when neither party deviates.
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Georgia Massachusetts

North Carolina Pennsylvania

Texas Virginia

Fig. 9. The most compact GT partitions compared to the best Polsby-Popper score observed (black dotted
line) for each of the deviations studied. The color of the bar represents which party deviates. The golden bar
reports the case when neither party deviates.
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