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We revisit the classic problem of designing voting rules that aggregate objective opinions, in a se�ing where

voters have noisy estimates of a true ranking of the alternatives. Previous work has replaced structural

assumptions on the noise with a worst-case approach that aims to choose an outcome that minimizes the

maximum error with respect to any feasible true ranking. �is approach underlies algorithms that have

recently been deployed on the social choice website RoboVote.org. We take a less conservative viewpoint by

minimizing the average error with respect to the set of feasible ground truth rankings. We derive (mostly

sharp) analytical bounds on the expected error and establish the practical bene�ts of our approach through

experiments.

1 INTRODUCTION
�e�eld of computational social choice [Brandt et al., 2016] has been undergoing a transformation, as

rigorous approaches to voting and resource allocation, previously thought to be purely theoretical,

are being applied to group decisionmaking and social computing in practice [Chen et al., 2016]. From

our biased viewpoint, RoboVote.org, a not-for-pro�t social choice website launched in November

2016, gives a compelling (and unquestionably recent) example. Its short-term goal is to facilitate

e�ective group decision making by providing free access to optimization-based voting rules. In

the long term, one of us has argued [Procaccia, 2016] that RoboVote and similar applications of

computational social choice can change the public’s perception of democracy.
1

RoboVote distinguishes between two types of social choice tasks: aggregation of subjective
preferences, and aggregation of objective opinions. Examples of the former task include a group

of friends deciding where to go to dinner or which movie to watch; family members selecting a

vacation spot; and faculty members choosing between faculty candidates. In all of these cases,

there is no single correct choice — the goal is to choose an outcome that makes the participants as

happy as possible overall.

By contrast, the la�er task involves situations where some alternatives are objectively be�er than

others, i.e., there is a true ranking of the alternatives by quality, but voters can only obtain noisy

estimates thereof. �e goal is, therefore, to aggregate these noisy opinions, which are themselves

rankings of the alternatives, and uncover the true ranking. For example, consider a group of

engineers deciding which product prototype to develop based on an objective metric, such as

projected market share. Each prototype, if selected for development (and, ultimately, production),

would achieve a particular market share, so a true ranking of the alternatives certainly exists. Other

examples include a group of investors deciding which company to invest in, based on projected

revenue; and employees of a movie studio selecting a movie script for production, based on projected

box o�ce earnings.

In this paper, we focus on the second se�ing — aggregating objective opinions. �is is a problem

that boasts centuries of research: it dates back to the work of the Marquis de Condorcet, published

in 1785, in which he proposed a random noise model that governs how voters make mistakes

when estimating the true ranking. He further suggested — albeit in a way that took 203 years to

decipher [Young, 1988] — that a voting rule should be amaximum likelihood estimator (MLE), that is,
it should select an outcome that is most likely to coincide with the true ranking, given the observed

1
Of course, many people disagree. We were especially amused by a reader comment on a sensationalist story about RoboVote

in the British tabloid Daily Mail: “Bloody robots coming over telling us how to vote! Take our country back!”

http://robovote.org
http://robovote.org
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votes and the known structure of the random noise model. Condorcet’s approach is the foundation

of a signi�cant body of modern work [Azari Sou�ani et al., 2012, 2013, 2014, Caragiannis et al.,

2014, 2016, Conitzer et al., 2009, Conitzer and Sandholm, 2005, Elkind et al., 2010, Elkind and Shah,

2014, Lu and Boutilier, 2011b, Mao et al., 2013, Procaccia et al., 2012, Xia, 2016, Xia and Conitzer,

2011, Xia et al., 2010].

While the MLE approach is conceptually appealing, it is also fragile. Indeed, it advocates rules

that are tailor-made for one speci�c noise model, which is unlikely to accurately represent real-

world errors [Mao et al., 2013]. Recent work [Caragiannis et al., 2014, 2016] circumvents this

problem by designing voting rules that are robust to large families of noise models, at the price

of theoretical guarantees that only kick in when the number of voters is large — a reasonable

assumption in crowdsourcing se�ings. However, here we are most interested in helping small

groups of people make decisions — on RoboVote, typical instances have 4–10 voters — so this

approach is a nonstarter.

1.1 The Worst-Case Approach
In recent work, Procaccia et al. [2016] have taken another step towards robustness (we will argue

shortly that it is perhaps a step too far). Instead of positing a random noise model, they essentially

remove all assumptions about the errors made by voters. To be speci�c, �rst �x a distance metric

d on the space of rankings. For example, the Kendall tau (KT) distance between two rankings

is the number of pairs of alternatives on which they disagree. We are given a vote pro�le and

an upper bound t on the average distance between the input votes and the true ranking. �is

induces a set of feasible true rankings — those that are within average distance t from the votes. �e

worst-case optimal voting rule returns the ranking that minimizes the maximum distance (according

to d) to any feasible true ranking. If this minimax distance is k , then we can guarantee that our

output ranking is within distance k from the true ranking. �e most pertinent theoretical results

of Procaccia et al. are that for any distance metric d , one can always recover a ranking that is at

distance at most 2t from the true ranking, i.e., k ≤ 2t ; and that for the four most popular distance

metrics used in the social choice literature (including the KT distance), there is a tight lower bound

of (roughly) k ≥ 2t .
Arguably the more compelling results of Procaccia et al., though, are empirical. In the case of

objective opinions, the measure used to evaluate a voting rule is almost indisputable: the distance

(according to the distance metric of interest, say KT) between the output ranking and the actual true
ranking. And, indeed, according to this measure, the worst-case approach signi�cantly outperforms

previous approaches — including those based on random noise models — on real data [Mao et al.,

2013]; we elaborate on this dataset later.

Based on the foregoing empirical results, the algorithms deployed on RoboVote for aggregating

objective opinions implement the worst-case approach. Speci�cally, given an upper bound t on
the average KT distance between the input votes and the true ranking,

2
the algorithm computes

the set of feasible true rankings (by enumerating the solutions to an integer program), and selects

a ranking that minimizes the KT distance to any ranking in that set (by solving another integer

program).

RoboVote also supports two additional output types: single winning alternative, and a subset of

alternatives. When the user requests a single alternative as the output, the algorithm computes the

set of feasible true rankings as before, and returns the alternative that minimizes the maximum

position in any feasible true ranking, that is, the alternative that is guaranteed to be as close to

2
�is value is set by minimizing the average distance between any input vote and the remaining votes. �is choice guarantees

a nonempty set of feasible true rankings, and performs extremely well in experiments.
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the top as possible. Computing a subset is similar, with the exception that the loss of a subset with
respect to a speci�c feasible true ranking is determined based on the top-ranked alternative in the

subset; the algorithm selects the subset that minimizes the maximum loss over all feasible true

rankings. In other words, if this loss is s then any feasible true ranking has an alternative in the

subset among its top s alternatives.

1.2 Our Approach and Results
To recap, the worst-case approach to aggregating objective opinions has proven quite successful.

Nevertheless, it is very conservative, and it seems likely that be�er results can be achieved in

practice by modifying it. We therefore take a more “optimistic” angle by carefully injecting some

randomness into the worst-case approach.

In more detail, we refer to the worst-case approach as “worst case” because the errors made by

voters are arbitrary, but there is actually another crucial aspect that makes it conservative: the

optimization objective — minimizing the maximum distance to any feasible true ranking when the

output is a ranking, and minimizing the maximum position or loss in any feasible true ranking

when the output is a single alternative or a subset of alternatives, respectively. We propose to

modify these objective functions, by replacing (in both cases) the word “maximum” with the word

“average”. Equivalently, we assume a uniform prior over the set of all rankings, which induces a

uniform posterior over the set of feasible true rankings, and replace the word “maximum” with the

word “expected”.
3
Note that this model is fundamentally di�erent from assuming that the votes are

random: as we mentioned earlier, it is arguable whether real-world votes can be captured by any

particular random noise model, not to mention a uniform distribution.
4
By contrast, we make no

structural assumptions about the noise, and, in fact, we do not make any new assumptions about

the world; we merely modify the optimization objective with respect to the same set of feasible

true rankings.

In Section 3, we study the case where the output is a ranking. We �nd that for any distance

metric, if the average distance between the vote pro�le and the true ranking is at most t , then we

can recover a ranking whose average distance to the set of feasible true rankings is also t . We also

establish essentially matching lower bounds for the four distance metrics studied by Procaccia et al.

[2016]. Note that our relaxed goal allows us to improve their bound from 2t to t , which, in our view,

is a qualitative improvement, as now we can guarantee performance that is at least as good as the

average voter. While we we would like to outperform the average voter, this is a worst-case (over

noisy votes) guarantee, and, as we shall see, in practice we indeed achieve excellent performance.

In Section 4, we explore the case where the output is a subset of alternatives (including the

all-important case of a single winning alternative). �is problem was not studied by Procaccia et al.

[2016], in part because their model does not admit nontrivial analytical solutions (as we explain

in detail later) — but it is just as important in practice, if not even more (see Section 1.1). We �nd

signi�cant gaps between the guarantees achievable under di�erent distance metrics. Our main

technical result concerns the practically signi�cant KT distance and the closely related footrule
distance: If the average distance between the vote pro�le and the true ranking is at most t , we can
pinpoint a subset of alternatives of size z, whose average loss — that is, the average position of the

subset’s top-ranked alternative in the set of feasible true rankings (smaller position is closer to the

top) — is O (
√
t/z). We also prove a lower bound of Ω(

√
t/z), which is tight for a constant subset

size z (note that z is now outside of the square root). For the maximum displacement distance, we

3
Our positive results actually work for any distribution; see Section 6.

4
�at said, some social choice papers do analyze uniformly random vote pro�les [Pritchard and Wilson, 2009, Tsetlin et al.,

2003] — a model known as impartial culture.
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have asymptotically matching upper and lower bounds of Θ(t/z). Interestingly, for the Cayley
distance and z = 1, we prove a lower bound of Ω(

√
m), showing that there is no hope of obtaining

positive results that depend only on t .
In Section 5, we present empirical results from real data. Our key �nding is that our methods are

robust to overestimates of the true average level of noise in the vote pro�le — signi�cantly more so

than the methods of Procaccia et al. [2016], which are currently deployed on RoboVote. We believe

that this conclusion is meaningful for real-world implementation.

2 PRELIMINARIES
Let A be a set of alternatives with |A| =m. Let L (A) be the set of possible rankings of A, which we

think of as permutations σ : A→ [m], where [m] = {1, . . . ,m}. �at is, σ (a) gives the position of

a ∈ A in σ , with σ−1 (1) being the highest-ranked alternative, and σ−1 (m) being the lowest-ranked

alternative. A ranking σ induces a strict total order �σ , such that a �σ b if and only if σ (a) < σ (b).
A vote pro�le π = (σ1, . . . ,σn ) ∈ L (A)

n
consists of n votes, where σi is the vote of voter i .

We next introduce notations that will simplify the creation of vote pro�les. For a subset of

alternatives A1 ⊆ A, let σA1
be an arbitrary ranking of A1. For a partition A1,A2 of A, A1 � A2 is a

partial order of A which speci�es that every alternative in A1 is preferred to any alternative in A2.

Similarly, A1 � σ
A2

is a partial ordering where the alternatives in A1 are preferred to those in A2

and the order of the alternatives in A2 is speci�ed to coincide with σA2
. An extension of a partial

order P is any ranking σ ∈ L (A) satisfying the partial order. Denote by F (P) the set of possible
extensions of P. For example, |F (A1 � A2) | = |A1 |! · |A2 |! and |F (A1 � σ

A2 ) | = |A1 |!.

Distance metrics on permutations play an important role in the paper. We pay special a�ention

to the following well-known distance metrics:

• �e Kendall tau (KT) distance, denoted dKT , measures the number of pairs of alternatives

on which the two rankings disagree:

dKT (σ ,σ
′) , |{(a,b) ∈ A2 | a �σ b and b �σ ′ a}|.

Equivalently, the KT distance between σ and σ ′ is the number of swaps between adjacent
alternatives required to transform one ranking into the other. Some like to think of it as

the “bubble sort” distance.

• �e footrule distance, denoted dFR , measures the total displacement of alternatives between

two rankings:

dFR (σ ,σ
′) ,

∑
a∈A

|σ (a) − σ ′(a) |.

• �e maximum displacement distance, denoted dMD , measures the largest absolute displace-

ment of any alternative between two rankings:

dMD (σ ,σ
′) , max

a∈A
|σ (a) − σ ′(a) |.

• �e Cayley distance, denoteddCY , measures the number of pairwise swaps required to trans-

form one ranking into the other. In contrast to the KT distance, the swapped alternatives

need not be adjacent.

We also require the following de�nitions that apply to any distance metric d . For a ranking
σ ∈ L (A) and a set of rankings S ⊆ L (A), de�ne the average distance between σ and S in the

obvious way,

d (σ , S ) ,
1

|S |

∑
σ ′∈S

d (σ ,σ ′).
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Similarly, de�ne the average distance between two sets of rankings S,T ⊆ L (A) as

d (S,T ) ,
1

|S | · |T |

∑
σ ∈S

∑
σ ′∈T

d (σ ,σ ′).

Finally, let d↓(k ) be the largest distance allowed under the distance metric d which is at most k , i.e.,

d↓(k ) , max{s ≤ k : ∃σ ,σ ′ ∈ L (A) s.t. d (σ ,σ ′) = s}.

3 RETURNING THE RIGHT RANKING, IN THEORY
We �rst tackle the se�ing where our goal is to return an accurate ranking. We assume that there is

an objective ground truth ranking σ ∗, and that n voters submit a vote pro�le π of noisy estimates of

this true ranking. As in the work of Procaccia et al. [2016], an individual vote is allowed to deviate

from the ground truth in any way, but we expect that the average error is bounded, that is, the

average distance between the vote pro�le and the ground truth is no more than some parameter t .
Formally, for a distance metric d on L (A), we are guaranteed that

d (π ,σ ∗) =
1

n

∑
σ ∈π

d (σ ,σ ∗) ≤ t .

�ere are several approaches for obtaining good estimates for this upper bound t ; we return to this

point later.

A combinatorial structure that plays a central role in our analysis is the “ball” of feasible ground

truth rankings,

Bt (π ) , {σ ∈ L (A) : d (π ,σ ) ≤ t }.

If this ball were a singleton (or empty), our task would be easy. But it typically contains multiple

feasible ground truths, as the following example shows.

Example 3.1. Suppose that A = {a,b, c} and the vote pro�le consists of 5 votes, π = {(a � b � c ),
(a � b � c ), (b � c � a), (c � a � b), (a � c � b)}. For each distance metric, let the bound on

average error equal half of the maximum distance allowed by the distance metric; in other words,

tKT = 1.5, tFR = 2, tMD = 1 and tCY = 1. �e set of feasible ground truths for the vote pro�le π
under the respective distance metrics may be found in Table 1.

Table 1. The set of feasible ground truths in Example 3.1 for various distance metrics.

d t Bt (π )

KT 1.5 {(a � b � c ), (c � a � b), (a � c � b)}
FR 2 {

(a � b � c )
(a � c � b)

}
MD 1

CY 1

Procaccia et al. [2016] advocate a conservative approach — they choose a ranking that minimizes

themaximum distance to any feasible ground truth. By contrast, we are concerned with the average
distance to the set of feasible ground truths. In other words, we assume that each of the feasible

ground truths is equally likely, and our goal is to �nd a ranking that has a small expected distance

to the set of feasible ground truths Bt (π ).
Our �rst result is that is it always possible to �nd a ranking σ ∈ π that is close to Bt (π ).
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Theorem 3.2. Given a pro�le π of n noisy rankings with average distance at most t from the ground
truth according to some distance metric d , there always exists a ranking within average distance t
from the set of feasible ground truths Bt (π ) according to the same metric.

Proof. For any σ ∈ Bt (π ), d (σ ,π ) ≤ t . It follows from the de�nitions that

d (π ,Bt (π )) =
1

n · |Bt (π ) |

∑
σ ′∈π

∑
σ ∈Bt (π )

d (σ ,σ ′) =
1

|Bt (π ) |

∑
σ ∈Bt (π )

1

n

∑
σ ′∈π

d (σ ,σ ′)

=
1

|Bt (π ) |

∑
σ ∈Bt (π )

d (σ ,π ) ≤ t .

To conclude the proof, observe that if the average distance from π to Bt (π ) is no more than t , then
there certainly exists σ ′′ ∈ π with d (σ ′′,Bt (π )) ≤ t . �

�is result holds for any distance metric. Interestingly, it also generalizes to any probability

distribution over Bt (π ), not just the uniform distribution (see Section 6 for additional discussion of

this point).

We next derive essentially matching lower bounds for the four common distance metrics intro-

duced in Section 2.

Theorem 3.3. For d ∈ {dKT ,dFR ,dMD ,dCY }, there exists a pro�le π of n noisy rankings with
average distance at most t from the ground truth, such that for any ranking, its average distance
(according to d) from Bt (π ) is at least d↓(2t )/2.

�e proof of this theorem relies heavily on constructions by Procaccia et al. [2016]; it is relegated

to Appendix A.

4 RETURNING THE RIGHT ALTERNATIVES, IN THEORY
In the previous section, we derived bounds on the expected distance of the ranking closest to the

set of feasible ground truth rankings. In practice, we may not be interested in eliciting a complete

ranking of alternatives, but rather in selecting a subset of the alternatives (o�en a single alternative)

on which to focus a�ention, time, or e�ort.

In this section, we bound the average position of the best alternative in a subset of alternatives,

where the average is taken over the set of feasible ground truths as before. �is type of utility

function, where the utility of a set is de�ned by its highest utility member, is consistent with quite

a few previous papers that deal with selecting subsets of alternatives in di�erent social choice

se�ings [Caragiannis et al., 2017, Chamberlin and Courant, 1983, Lu and Boutilier, 2011a, Monroe,

1995, Procaccia et al., 2012, 2008]. For example, when selecting a menu of movies to show on a

three hour �ight, the utility of passengers depends on their most preferred alternative. From a

technical viewpoint, this choice has the advantage of giving bounds that improve as the subset size

increases, which matches our intuition. Of course, in the important special case where the subset is

a singleton, all reasonable de�nitions coincide.

Formally, let Z ⊆ A be a subset of alternatives; the loss of Z in σ is `(Z ,σ ) , mina∈Z σ (a), and
therefore the average loss of Z in Bt (π ) is

`(Z ,Bt (π )) ,
1

|Bt (π ) |

∑
σ ∈Bt (π )

`(Z ,σ ).

For given average error t and subset size z, we are interested in bounding

max

π ∈L (A)n
min

Z ⊆A s.t. |Z |=z
`(Z ,Bt (π )).
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In words, we wish to bound the the average loss of the best Z (of size z) in Bt (π ), in the worst case

over vote pro�les.

Let us return to Example 3.1. For the footrule, maximum displacement, and Cayley distance

metrics, it is clear from Table 1 that selecting {a} when z = 1 guarantees average loss 1, as Bt (π )
only contains rankings that place a �rst. For the KT distance, the set {a} has average loss 4/3, and
the set {a, c} has average loss 1.

We now turn to the technical results, starting with some lemmas that are independent of speci�c

distance metrics. �roughout this section, we will rely on the following lemma, which is the

discrete analogue of selecting a set of z numbers uniformly at random in an interval and studying

their order statistics. No doubt someone has proved it in the past, but we include our (cute, if we

may say so ourselves) proof, as we will need to reuse speci�c equations.

Lemma 4.1. When choosing z elements Y1, . . . ,Yz uniformly at random without replacement from
the set [k], E[mini ∈[z] Yi ] =

k+1
z+1 .

Proof. Let Ymin = mini ∈[z] Yi be the minimum value of the z numbers chosen uniformly at

random from [k] without replacement. It holds that

Pr[Ymin = y] =

(
k−y
z−1

)(
k
z

) ,
and therefore

E[Ymin] =

k∑
y=1

y

(
k−y
z−1

)(
k
z

) = 1(
k
z

) k∑
y=1

y

(
k − y

z − 1

)
=

1(
k
z

) k−z+1∑
y=1

y

(
k − y

z − 1

)
. (1)

We claim that

k−z+1∑
y=1

y

(
k − y

z − 1

)
=

(
k + 1

z + 1

)
. (2)

Indeed, the le� hand side can be interpreted as follows: for each choice of y ∈ [k − z + 1], elements

{1, . . . ,y} form a commi�ee of sizey. We havey possibilities for choosing the head of the commi�ee.

�en we choose z − 1 clerks among the elements {y + 1, . . . ,k }. We can interpret the right hand

side of Equation (2) in the same way. To see how, choose z + 1 elements from [k + 1], and sort

them in increasing order to obtain s1, . . . , sz+1. Now s1 is the head of the commi�ee, y = s2 − 1 is
the number of commi�ee members, and s3 − 1, . . . , sz+1 − 1 are the clerks.

Plugging Equation (2) into Equation (1), we get

E[Ymin] =

(
k+1
z+1

)(
k
z

) = k + 1

z + 1
.

�

Our strategy for proving upper bounds also relies on the following lemma, which relates the

performance of randomized rules on the worst ranking inBt (π ), to the performance of deterministic

rules on average, and is reminiscent of Yao’s Minimax Principle [Yao, 1977]. �is lemma actually

holds for any distribution over ground truth rankings, as we discuss in Section 6.

Lemma 4.2. Suppose that for a given Bt (π ), there exists a distribution D over subsets of A of size z
such that

max

σ ∈Bt (π )
EZ∼D [`(Z ,σ )] = k .

�en there exists Z ∗ ⊆ A of size z whose average loss in Bt (π ) is at most k .
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Proof. LetU be the uniform distribution over rankings in Bt (π ). �en clearly

EZ∼D,σ∼U [`(Z ,σ )] ≤ k,

as this inequality holds pointwise for all σ ∈ Bt (π ). It follows there must exist at least one Z ∗ such
that

`(Z ∗,Bt (π )) = Eσ∼U [`(Z ∗,σ )] ≤ k,

that is, the average loss of Z ∗ in Bt (π ) is at most k . �

Finally, we require a simple lemma of Procaccia et al. [2016].

Lemma 4.3. Given a pro�le π of n noisy rankings with average distance at most t from the ground
truth according to a distance metric d , there exists σ ∈ L (A) such that for all τ ∈ Bt (π ), d (σ ,τ ) ≤ 2t .

4.1 The KT and Footrule Distances
We �rst focus on the KT distance and the footrule distance. �e KT distance is by far the most

important distance metric over permutations, both in theory, and in practice (see Section 1.1). We

study it together with the footrule distance because the two distances are closely related, as the

following lemma, due to Diaconis and Graham [1977], shows.

Lemma 4.4. For all σ ,σ ′ ∈ L (A), dKT (σ ,σ ′) ≤ dFR (σ ,σ
′) ≤ 2dKT (σ ,σ

′).

Despite this close connection between the two metrics, it is important to note that it does not

allow us to automatically transform a bound on the loss for one into a bound for the other.

�e next upper bound is, in our view, our most signi�cant theoretical result. It is formulated for

the footrule distance, but, as we show shortly, also holds for the KT distance.

Theorem 4.5. For d = dFR , given a pro�le π of n noisy rankings with average distance at most t
from the ground truth, and a number z ∈ [m], there always exists a subset of size z whose average loss
in the set of feasible ground truths Bt (π ) is at most O (

√
t/z).

At some point in the proof, we will rely on the following (almost trivial) lemma.

Lemma 4.6. Given two positive sequences of k real numbers, P , andQ , such that P is non-decreasing,
Q is strictly decreasing and

∑k
i=1 Pi = C , the sequence P that maximizes S =

∑n
i=1 PiQi is constant,

i.e., Pi = C/k for all i ∈ [k].

Proof. Assume for contradiction that P maximizes S and contains consecutive elements such

that Pj < Pj+1. Nowmoving mass from Pj+1 and distributing it to all lower positions in the sequence
will strictly increase S . Concretely, if Pj+1 = Pj + ε , we can subtract jε/(j + 1) from Pj+1 and add

ε/(j + 1) to Pi for all i ∈ [j]. Because Q is strictly decreasing, this increases S by

*
,

j∑
i=1

Qiε

j + 1
+
-
−
Q j+1jε

j + 1
> *

,

j∑
i=1

Q jε

j + 1
+
-
−
Q j+1jε

j + 1
=

jε

j + 1
(Q j −Q j+1) > 0,

contradicting the assumption that P maximizes S . We may conclude that P is constant. �

Proof of Theorem 4.5. By Lemma 4.2, it is su�cient to construct a randomized rule that has

expected loss at most O (
√
t/z) in any ranking in Bt (π ). To this end, let σ ∈ L (A) such that

d (σ ,τ ) ≤ 2t for any τ ∈ Bt (π ); its existence is guaranteed by Lemma 4.3. Let k =
√
tz, and assume

for ease of exposition that k is an integer. For y = 1, . . . ,k , let ay = σ
−1 (y). Our randomized rule

simply selects z alternatives uniformly at random from the top k alternatives in σ , that is, from
the set T , {a1, . . . ,ak }. So, �xing some τ ∈ Bt (π ), we need to show that choosing z elements
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uniformly at random from the worst-case positions occupied by T in τ has expected minimum

position at most O (
√
t/z).

Let Y σmin be the minimum position in σ of a random subset of size z from T . By Lemma 4.1 and

Equation (1), we have

E[Y σmin] =

k∑
y=1

y

(
k−y
z−1

)(
k
z

) = k + 1

z + 1
.

However, we are interested in the positions of these elements in τ ∈ Bt (π ), not σ . Instead of

appearing in position y, alternative ay appears in position py , τ (ay ). �erefore, the expected

minimum position in τ is

E[Y τmin] =

k∑
y=1

py

(
k−y
z−1

)(
k
z

) .
We wish to upper bound E[Y τmin]. Equivalently, because E[Y

σ
min] is �xed and independent of τ , it is

su�cient to maximize the expression

E[Y τmin] − E[Y
σ
min] =

k∑
y=1

py

(
k−y
z−1

)(
k
z

) − k∑
y=1

y

(
k−y
z−1

)(
k
z

)
=

k∑
y=1

(py − y)

(
k−y
z−1

)(
k
z

) . (3)

Let us now assume that py < py+1 for all y ∈ [k − 1], that is, τ and σ agree on the order of

the alternatives in T ; we will remove this assumption later. Since the original positions of the

alternatives in T were {1, . . . ,k } it follows that py ≥ y for all y ∈ [k]. Moreover, because(
k−y
z−1

)(
k
z

) > (
k−(y+1)
z−1

)(
k
z

) ,

the sequence of probabilities

Q =



(
k−y
z−1

)(
k
z

) 
y∈[k]

is strictly decreasing in y. Additionally, the sequence P = {py − y}y∈[k] is non-decreasing, because
py+1 > py , coupled with the fact that both values are integers, implies that py+1 ≥ py + 1.

In light of these facts, let us return to Equation (3). We wish to maximize

E[Y τmin] − E[Y
σ
min] =

k∑
y=1

(py − y)

(
k−y
z−1

)(
k
z

) = k∑
y=1

PyQy .

By Lemma 4.6, py −y is the same for all y ∈ [k], that is, all alternatives inT are shi�ed by the same

amount from σ to form τ . Moreover, we have that

k∑
y=1

(py − y) ≤ d (σ ,τ ) ≤ 2t .

Using k = |T | =
√
zt , we conclude that py − y ≤ 2

√
t/z for all y ∈ [k]. �erefore, in the worst

τ ∈ Bt (π ), we have that the alternatives in T occupy positions 2

√
t/z + 1 to 2

√
t/z +

√
tz in τ . By
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Lemma 4.1, the expected minimum position of T in τ is

2

√
t

z
+

√
tz + 1

z + 1
= O *

,

√
t

z
+
-
.

To complete the proof, it remains to show that our assumption that py < py+1 for all y ∈ [k − 1]
is without loss of generality. To see this, note that since we are selecting uniformly at random from

T , Y τmin only depends on the positions occupied by T in τ . Moreover, if τ does not preserve the

order over T , we can �nd a ranking τ ′ that has the following properties:

(1) d (σ ,τ ′) ≤ 2t .
(2) T occupies the same positions: {τ (a1), . . . ,τ (ak )} = {τ

′(a1), . . . ,τ
′(ak )}.

(3) τ ′ preserves the order over T : τ ′(ay ) < τ
′(ay+1) for all y ∈ [k − 1].

Now all our arguments would apply to τ ′, and E[Y τmin] = E[Y
τ ′
min].

In order to construct τ ′, suppose that τ (ay ) > τ (ay+1), and consider τ ′′ that is identical to τ
except for swapping ay and ay+1. �en

d (τ ′′,σ ) = d (τ ,σ ) +
(
|τ ′′(ay ) − y | + |τ

′′(ay+1) − (y + 1) | − |τ (ay ) − y | − |τ (ay+1 − (y + 1) |
)

≤ d (τ ,σ ) ≤ 2t .

By iteratively swapping alternatives we can easily obtain the desired τ ′. �

We next formulate the same result for the KT distance. �e proof is very similar, so instead of

repeating it, we just give a proof sketch that highlights the di�erences.

Theorem 4.7. For d = dKT , given a pro�le π of n noisy rankings with average distance at most t
from the ground truth, and a number z ∈ [m], there always exists a subset of size z whose average loss
in the set of feasible ground truths Bt (π ) is at most O (

√
t/z).

Proof sketch. �e proof only di�ers from the proof of �eorem 4.7 in two places.

First, the footrule proof had the inequality

k∑
y=1

(py − y) ≤ dFR (σ ,τ ) ≤ 2t .

In our case,

k∑
y=1

(py − y) ≤ dFR (σ ,τ ) ≤ 2 · dKT (σ ,τ ) ≤ 4t ,

where the second inequality follows from Lemma 4.4.

Second, if τ does not preserve the order over T , we needed to �nd a ranking τ ′ that has the
following properties:

(1) d (σ ,τ ′) ≤ 2t .
(2) T occupies the same positions: {τ (a1), . . . ,τ (ak )} = {τ

′(a1), . . . ,τ
′(ak )}.

(3) τ ′ preserves the order over T : τ ′(ay ) < τ
′(ay+1) for all y ∈ [k − 1].

To construct τ ′ under d = dKT , we use the same strategy as before: Suppose that τ (ay ) > τ (ay+1),
and consider τ ′′ that is identical to τ except for swapping ay and ay+1. We claim that d (τ ′,σ ) ≤
d (τ ,σ ) ≤ 2t . Indeed, notice that all a ∈ T precede all b ∈ A \ T in σ . �erefore, holding

all else equal, switching the relative order of alternatives in T will not change the number of

pairwise disagreements on alternatives b ∈ T , b ′ ∈ A \ T , nor will it change the number of

pairwise disagreements on alternatives b,b ′ ∈ A \T . It will only (strictly) decrease the number of

disagreements on alternatives in T . �
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Our next result is a lower bound of Ω(
√
t/z) for both distance metrics. Note that here z is outside

the square root, i.e., there is a gap of

√
z between the upper bounds given in �eorems 4.5 and 4.7,

and the lower bound. �at said, the lower bound is tight for a constant z, including the important

case of z = 1.

Theorem 4.8. For d ∈ {dFR ,dKT }, z ∈ [m], and an even n, there exist t = O (m2) and a pro�le π
of n noisy rankings with average distance at most t from the ground truth, such that for any subset of
size z, its average loss in the set of feasible ground truths Bt (π ) is at least Ω(

√
t/z).

Proof. We �rst prove the theorem for the KT distance, that is, d = dKT . For any k ≥ 1, let

t =
(
k
2

)
/2; equivalently, let

k =
1 +
√
1 + 16t

2

= Θ
(√

t
)
.

Let σ = (a1 � · · · � am ), and let σR (k ) = (ak ,ak−1, . . . ,a1,ak+1, . . . ,am ) be the ranking that

reverses the �rst k alternatives of σ . Consider the vote pro�le π with n/2 copies of each ranking σ
and σR (k ) .
Let Ak = {a1, . . . ,ak } and denote by σ−k the ranking of A \Ak ordered as in σ . We claim that

Bt (π ) = F (Ak � σ−k ), i.e., exactly the rankings that have some permutation of Ak in the �rst

k positions, and coincide with σ in all the other positions. Indeed, consider any τ ∈ L (A). �is

ranking will disagree with exactly one of σ and σR (k ) on every pair of alternatives in Ak , so

d (τ ,π ) ≥

(
k
2

)
2

= t .

It follows that if τ ∈ Bt (π ) then τ must agree with σ−k on the remaining alternatives.

Now let Z be a subset of z alternatives. Note that for every a ∈ A \Ak and τ ∈ B, τ (a) > k , so it

is best to choose Z ⊂ Ak . We are interested in the expected loss of Z under the uniform distribution

on Bt (π ), which amounts to a random permutation of Ak . �is is the same as choosing z positions
at random from [k]. By Lemma 4.1, the expected minimum position of a randomly chosen subset

of size z is k+1
z+1 . Since k =

1+
√
1+16t
2

, it holds that

E[Ymin] =

1+
√
1+16t
2

+ 1

z + 1
= Ω

(√
t

z

)
.

For d = dFR , the construction is analogous to above, with one minor modi�cation. For any k ≥ 1,

we let t = bk2/2c/2, because the footrule distance between σ and σR (k ) is bk
2/2c, instead of

(
k
2

)
as

in the KT case. Now, the proof proceeds as before. �

An important remark is in order. Suppose that instead of measuring the average loss of the

subset Z in Bt (π ), we measured the maximum loss in any ranking in Bt (π ), in the spirit of the

model of Procaccia et al. [2016]. �en the results would be qualitatively di�erent. To see why on

an intuitive level, consider the KT distance, and suppose that the vote pro�le π consists of n copies

of the same ranking σ . �en for any a ∈ A, Bt (π ) includes a ranking σ
′
such that σ ′(a) ≥ t (by

using our “budget” of t to move a downwards in the ranking). �erefore, for z = 1, it is impossible

to choose an alternative whose maximum position (i.e., loss) in Bt (π ) is smaller than t . In contrast,

�eorem 4.5 gives us an upper bound of O (
√
t ) in our model.

4.2 The Maximum Displacement Distance
We now turn to the maximum displacement distance. Here the bounds are signi�cantly worse

than in the KT and footrule se�ings. On an intuitive level, the reason is that two rankings that are
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at maximum displacement distance t from each other can be drastically di�erent, because every
alternative can move by up to t positions. �erefore, Bt (π ) under maximum displacement would

typically be larger than under the distance metrics we previously considered. Indeed, this is the

case in Example 3.1 if one sets tMD ≥ 1.5.

Theorem 4.9. For d = dMD , given a pro�le π of n noisy rankings with average distance at most t
from the ground truth, and a number z ∈ [m], there always exists a subset of size z whose average loss
in the set of feasible ground truths Bt (π ) is at most O (t/z).

Proof. By Lemma 4.2, it is su�cient to construct a randomized rule that has expected loss at

most O (t/z) in any ranking in Bt (π ). To this end, let σ ∈ L (A) such that d (σ ,τ ) ≤ 2t for any
τ ∈ Bt (π ); its existence is guaranteed by Lemma 4.3. For y = 1, . . . , 3t , let ay = σ−1 (y). Our
randomized rule selects z alternatives uniformly at random from the top 3t alternatives in σ , that
is, from the set T , {a1, . . . ,a3t }.

Let T ′ be the top t alternatives in a ranking τ ∈ Bt (π ). Since d (σ ,τ ) ≤ 2t , we know that T ′ ⊂ T .
Moreover, for any ay ∈ T , we have that py , τ (ay ) ≤ 5t . Assume without loss of generality that

py ≤ py+1 for all y ∈ [3t − 1]; then we have that the vector of positions (p1, . . . ,p3t ) is pointwise
at least as small as the vector (1, 2, . . . , t , 5t , 5t , . . . , 5t ). Using Lemma 4.1 and Equation (1), we

conclude that the minimum position in τ when selecting z alternatives uniformly at random from

T , denoted Y τmin , satis�es

E[Y τmin] =

3t∑
y=1

py

(
3t−y
z−1

)(
3t
z

) = t−1∑
y=1

py

(
3t−y
z−1

)(
3t
z

) + 3t∑
y=t

py

(
3t−y
z−1

)(
3t
z

) ≤

t−1∑
y=1

y

(
3t−y
z−1

)(
3t
z

) + 3t∑
y=t

5t

(
3t−y
z−1

)(
3t
z

)
≤ 5 ·

3t∑
y=1

y

(
3t−y
z−1

)(
3t
z

) = 5 ·
3t + 1

z + 1
= Θ

( t
z

)
.

�

We next establish a lower bound of Ω(t/z) on the average loss achievable under the maximum

displacement distance. Note that this lower bound matches the upper bound of �eorem 4.9.

Theorem 4.10. For d = dMD , given k ∈ N and z ∈ [m], there exist t = Θ(k ) and a vote pro�le π
of k! noisy votes at average distance at most t from the ground truth, such that for any subset of size z,
its average loss in the set of feasible ground truths Bt (π ) is at least Ω(t/z).

Proof. Let π = F (Ak � σ
A\Ak ), where |Ak | = k . For some τ ∈ π , let t = d (τ ,π ). By symmetry,

τ ′ ∈ Bt (π ) for all τ
′ ∈ π .

We �rst claim that t = Ω(k ). Indeed, t is the average distance between τ and π . Le�ing U be

the uniform distribution over π , we have that t = Eτ ′∼U [d (τ ,τ
′)]. Now consider the top-ranked

alternative in τ , a , τ−1 (1). Because U amounts to a random permutation over Ak , it clearly holds

that Eτ ′∼U [τ
′(a)] = (k + 1)/2, and therefore

t = Eτ ′∼U [d (τ ,τ
′)] = Eτ ′∼U

[
max

b ∈A
|τ ′(b) − τ (b) |

]
≥ Eτ ′∼U [τ

′(a) − τ (a)] =
k + 1

2

− 1 = Ω(k ).

Now, suppose that we have shown that Bt (π ) = π ; we argue that the theorem follows. Let

Z ⊆ A be a subset of alternatives of size z. We can assume without loss of generality that Z ⊆ Ak ,

as Ak is ranked at the top of every τ ∈ Bt (π ). But because Bt (π ) consists of all permutations of

Ak , `(Z ,Bt (π )) is equal to the expected minimum position when z elements are selected uniformly

at random from the positions occupied by Ak , namely [k]. �at is, we have that

`(Z ,Bt (π )) =
k + 1

z + 1
= Ω

( t
z

)
.
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�erefore, it only remains to show that Bt (π ) = π . Indeed, let τ < π , then there exists a ∈ Ak
such that τ (a) > k . Without loss of generality assume a is unique and let τ (a) = k + 1. �ere

must then be some b ∈ A \Ak with τ (b) ≤ k . Recall that the alternatives in A \Ak remain in �xed

positions in π , and, again without loss of generality, suppose that σ (b) = k + 1 for all σ ∈ π . We

wish to show that d (τ ,π ) > d (σ ,π ) for all σ ∈ π .
Let τ ′ be τ except that a and b are swapped, so τ ′(a) = τ (b) and τ ′(b) = τ (a). Observe that

τ ′ ∈ π since a is unique. By de�nition, d (τ ′,π ) = d (σ ,π ) for all σ ∈ π . It is therefore su�cient to

show that d (τ ′,π ) < d (τ ,π ).
To this end, we partition the rankings σ ∈ π \ {τ ′} into two sets, analyze them separately and in

both cases show that d (τ ′,σ ) ≤ d (τ ,σ ).

(1) σ (a) ≤ τ ′(a) (see Figure 1): In this case, we have that |σ (a) − τ (a) | ≥ |σ (a) − τ ′(a) |. Also,
because σ and τ ′ agree on the position of b ∈ A \ Ak , 0 = |σ (b) − τ

′(b) | ≤ |σ (b) − τ (b) |.
We conclude that d (τ ′,σ ) ≤ d (τ ,σ ).

σ (a)

τ (b)

τ ′(a) τ (a)

σ (b) = τ ′(b)

|σ (a) − τ ′(a) |

|σ (a) − τ (a) |

Fig. 1. Illustration of Case 1 of the proof of Theorem 4.10.

(2) σ (a) > τ ′(a) (see Figure 2): It again holds that 0 = |σ (b) − τ ′(b) | ≤ |σ (b) − τ (b) |, so if

d (τ ′,σ ) > d (τ ,σ ) then d (τ ′,σ ) is determined by a (i.e., a has the maximum displacement).

Assume for contradiction that d (τ ′,σ ) > d (τ ,σ ). �en it holds that

d (τ ′,σ ) = |σ (a) − τ ′(a) | ≤ |σ (a) − τ ′(a) | + |σ (a) − τ (a) | = |σ (b) − τ (b) | ≤ d (τ ,σ ),

a contradiction. We may conclude that d (τ ′,σ ) ≤ d (τ ,σ ).

τ ′(a)

τ (b)

σ (a) τ (a)

σ (b) = τ ′(b)

|σ (a) − τ ′(a) | |σ (a) − τ (a) |

|σ (b) − τ (b) |

Fig. 2. Illustration of Case 2 of the proof of Theorem 4.10.

Since d (τ ′,σ ) ≤ d (τ ,σ ) for all σ ∈ π \ {τ ′}, and d (τ ′,τ ′) = 0 < d (τ ,τ ′) we may conclude that

d (τ ,π ) > d (τ ′,π ) = t . It follows that Bt (π ) = π , thereby completing the proof. �

4.3 The Cayley Distance
In the previous sections, we have seen that our bounds are very di�erent for di�erent distance

metrics. Still, all those bounds depended on t . By contrast, we establish a lower bound of Ω(
√
m)

on the average loss of any subset with z = 1 (i.e., the average position of any alternative) under the
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Cayley distance. We view this as a striking negative result: Even if the votes are extremely accurate,

i.e., t is very small, the ball Bt (π ) could be such that the average position of any alternative is as

large as Ω(
√
m).

Theorem 4.11. For d = dCY and every k ∈ [
√
m/3], there exists t = Θ(k ) and a vote pro�le π with

n = k!

(√
m

k

)
2

noisy rankings at average distance at most t from the ground truth, such that for any single alternative,
its average position in the set of feasible ground truths Bt (π ) is at least Ω(

√
m).

�e theorem’s proof appears in Appendix B. Note that the delicate construction is speci�c to

the case of z = 1. It remains open whether the theorem still holds when, say, z = 2, and, more

generally, how the bound decreases as a function of z.

5 MAKING THE RIGHT DECISIONS, IN PRACTICE
We have two related goals in practice, to recover a ranking that is close to the ground truth, and

identify a subset of alternatives with small loss in the ground truth. We compare the optimal rules

that minimize the average distance or loss on Bt (π ), denoted AVG
d
, which we developed, to those

that minimize the maximum distance or loss, denoted MAX
d
, which were developed by Procaccia

et al. [2016]. Importantly, at least for the case where the output is a ranking, Procaccia et al. [2016]

have compared their methods against a slew of previously studied methods — including MLE rules

for famous random noise models like the one due to Mallows [1957] — and found theirs to be

superior. In addition, their methods are the ones currently used in practice, on RoboVote. �erefore

we focus on comparing our methods to theirs.

Datasets. Like Procaccia et al. [2016], we make use of two real-world datasets collected by Mao

et al. [2013]. In both of these datasets — dots and puzzle — the ground truth rankings are known,

and data was collected via Amazon Mechanical Turk. Dataset dots was obtained by asking workers

to rank four images containing di�erent numbers of dots in increasing order. Dataset puzzle was
obtained by asking workers to rank four di�erent states of a puzzle according to the minimal

number of moves necessary to reach the goal state. Each dataset consists of four di�erent noise

levels, corresponding to levels of di�culty, represented using a single noise parameter. In dots,
higher noise corresponds to smaller di�erences between the number of dots in the images, whereas

in puzzle, higher noise entails ranking states that are all a constant number of steps further from

the goal state. Overall the two datasets contain thousands of votes — 6367, to be precise.

Experimental design. When recovering complete rankings, the evaluation metric is the distance

of the returned ranking to the actual (known) ground truth. We reiterate that, although MAX
d
is

designed to minimize the maximum distance to any feasible ground truth given an input pro�le

π and an estimate of the average noise t , that is, it is designed for the worst case, it is known to

work well in practice [Procaccia et al., 2016]. Similarly, AVG
d
is designed to optimize the average

distance to the set of feasible ground truths; our experiments will determine whether this is a useful

proxy for minimizing the distance to an unknown ground truth.

When selecting a subset of alternatives, the evaluation metric is the loss of that subset in the

actual ground truth. As discussed above, the current implementation of RoboVote uses the rule

MAX
d
that returns the set of alternatives that minimizes the maximum loss in any feasible true

ranking. As in the complete ranking se�ing, the rule AVG
d
returns the set of alternatives that

minimizes the average loss over the feasible true rankings.



Gerdus Benade, Anson Kahng, and Ariel D. Procaccia 15

It is important to emphasize that in both these se�ings, MAX
d
and AVG

d
optimize an objective

over the set of feasible ground truths, but are evaluated on the actual known ground truth. It is

therefore impossible to predict in advance which of the methods will perform best.

Our theoretical results assume that an upper bound t on the average error is given to us, and

our guarantees depend on this bound. In practice, though, t has to be estimated. For example,

the current RoboVote implementation uses tRV = minσ ∈π d (σ ,π )/|π |, or the minimum average

distance from one ranking in π to all other rankings in π .
In our experiments, we wish to study the impact of the choice of t on the performance of

AVG
d
and MAX

d
. A natural choice is t∗ , d (π ,σ ∗), where π is the vote pro�le and σ ∗ is the actual

ground truth. �at is, t∗ is the average distance between the vote pro�le and the actual ground

truth. In principle it is an especially good choice because it induces the smallest ball Bt (π ) that
contains the actual ground truth. However, it is also an impractical choice, because one cannot

compute this value without knowing the ground truth. We also consider

tKEM , min

σ ∈L (A)
d (σ ,π )

(named a�er the Kemeny rule) — the minimum possible distance between the vote pro�le and any

ranking.

In order to synchronize results across di�erent pro�les, we let t̂ be the estimate of t that we feed
into the methods, and de�ne

r =
t̂ − tKEM
t∗ − tKEM

.

Note that because tKEM is the minimum value that allows for a nonempty set of feasible ground

truths, we know that t∗ − tKEM ≥ 0. For any pro�le, r = 0 implies that t̂ = tKEM , r < 1 implies that

t̂ < t∗, r = 1 implies that t̂ = t∗, and r > 1 implies that t̂ > t∗. In our experiments, as in the work of

Procaccia et al. [2016], we use r ∈ [0, 2].

Results and their interpretation. Our results for three output types — ranking, subset with z = 1

(single winner), and subset with z = 2 — can be found in Figures 3, 4, and 5, respectively. Each has

two sub�gures, for the KT distance, and the Cayley distance. All Figures show r on the x axis. In

Figure 3, the y axis shows the distance between the output ranking and the actual ground truth.
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Fig. 3. Dots dataset (noise level 4), ranking output.
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Fig. 4. Dots dataset (noise level 4), subset output with z = 1.
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Fig. 5. Dots dataset (noise level 4), subset output with z = 2.

In Figures 4 and 5, the y axis shows the loss of the selected subset on the actual ground truth. All

�gures are based on the dots dataset with the highest noise level (4). �e results for the puzzle

dataset are similar (albeit not as crisp), and the results for di�erent noise levels are quite similar.

�e results di�er across distance functions, but the conclusions below apply to all four, not just the

two that are shown here. Additional �gures can be found in appendix C.

It is interesting to note that, while in Figure 3 the accuracy of each distance metric is measured

using that metric (i.e., KT is measured with KT and Cayley with Cayley), in the other two �gures

the two distances are measured in the exact same way: based on position or loss in the ground

truth. Despite the dismal theoretical results for Cayley (�eorem 4.11), its performance in practice

is comparable to KT.

More importantly, we see that although MAX
d
and AVG

d
perform similarly on low values of r ,

AVG
d
signi�cantly outperforms MAX

d
on medium and high values of r , and especially when r > 1,

that is, t̂ > t∗. �is is true in all cases (including the two distance metrics that are not shown),
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except for the ranking output type under the KT distance (Figure 3a) and the footrule distance

(Appendix C), where the performance of the two methods is almost identical across the board

(values of r , datasets, and noise levels).

�ese results match our intuition. As r increases so does t̂ , and the set Bt̂ (π ) grows larger. When

this set is large, the conservatism of MAX
d
becomes a liability, as it minimizes the maximum

distance with respect to rankings that are unlikely to coincide with the actual ground truth. By

contrast, AVG
d
is more robust: It takes the new rankings into account, but does not allow them to

dictate its output.

�e practical implication is clear. Because we do not have a way of divining t∗, which is o�en

the most e�ective choice in practice, we resort to relatively crude estimates, such as the deployed

choice of tRV discussed above. Moreover, underestimating t∗ is o�en risky, as the results show,

because the ball Bt̂ (π ) does not contain the actual ground truth when t̂ < t∗. �erefore in practice

we try to aim for estimates such that t̂ > t∗, and robustness to the value of t̂ is crucial. In this sense

AVG
d
is a be�er choice than MAX

d
.

6 DISCUSSION
We wrap up with a brief discussion of several key points.

Non-uniform distributions. All of our upper bound results, namely �eorems 3.2, 4.5, 4.7, and 4.9,

apply to any distribution over Bt (π ), not just the uniform distribution (when replacing “average”

distance/loss with “expected” distance/loss). To see why this is true for the la�er three theorems,

note that their proofs construct a randomized rule and leverage Lemma 4.2, which easily extends to

any distribution. While this is a nice point to make, we do not believe that non-uniform distributions

are especially well motivated — where would such a distribution come from? By contrast, the

uniform distribution represents an agnostic viewpoint.

Computational complexity. We have not paid much a�ention to computational complexity. In

our experiments there are only four alternatives, so we can easily compute Bt (π ) by enumeration.

For real-world instances, integer programming is used, as we brie�y discussed in Section 1.1.

While those implementations are for rules that minimize the maximum distance or loss over

Bt (π ) [Procaccia et al., 2016], they can be easily modi�ed to minimize the average distance or loss.

�erefore, at least for the purposes of applications like RoboVote, computational complexity is not
an obstacle.

Real-world implications. As noted in Section 5, our empirical results suggest that minimizing

the average distance or loss has a signi�cant advantage in practice over minimizing the maximum

distance or loss. We are therefore planning to continue re�ning our methods, and ultimately deploy

them on RoboVote, where they will in�uence the way thousands of people around the world make

group decisions.
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A PROOF OF THEOREM 3.3
To prove the lower bounds we will make use of several technical lemmas. �e next three lemmas

were established by Procaccia et al. [2016, �eorem 5].

Lemma A.1. For d = dKT and t ≤ (m/12)2, there exists a partition of A into A1,A2,A3,A4, and a
vote pro�le consisting of n/2 copies of each of the rankings

σ = σA1 � σA2 � σA3 � σA4

σ ′ = σA1

r ev � σ
A2

r ev � σ
A3

r ev � σ
A4 ,

for which Bt (π ) = F (A1 � A2 � A3 � σ
A4 ) and b2tc =

∑
3

i=1

(
mi
2

)
, wheremi , |Ai | for i ∈ [4].

Lemma A.2. For d = dFR and t ≤ (m/8)2, there exists a partition of A into A1, A2, A3, A4, and A5,
and a vote pro�le π ∈ L (A)n consisting of n/2 copies of each of the following rankings,

σ = σA1 � σA2 � σA3 � σA4 � σA5

σ ′ = σA1

r ev � σ
A2

r ev � σ
A3

r ev � σ
A4

r ev � σ
A5 ,

for which

Bt (π ) =
{
ρ ∈ L (A) | {ρ (aji ), ρ (a

2mi+1−j
i )} = {σ (aji ),σ (a

2mi+1−j
i )} for i ∈ [4], j ∈ [2mi ], and

ρ (aj
5
) = σ (aj

5
) = σ ′(aj

5
) for j ∈ [m5])

}
,

where 2mi = |Ai | for i ∈ [4],m5 = |A5 |, and

d↓FR (2t ) =
4∑
i=1

⌊
(2mi )

2

2

⌋
.

Lemma A.3. For d = dCY and t such that 2b2tc ≤ m, there exists a vote pro�le π consisting of n/2
copies of each of the following rankings,

σ = (a1 � · · · � a2 b2t c � a2 b2t c+1 � · · · � am )

σ ′ = (a2 b2t c � · · · � a1 � a2 b2t c+1 � · · · � am ),

for which

Bt (π ) = {ρ ∈ L (A) |{ρ (ai ), ρ (a2 b2t c+1−i )} = {i, 2b2tc + 1 − i} for i ∈ [b2tc], and

ρ (ai ) = i for i > 2b2tc}.

We will need a similar result for maximum displacement.

Lemma A.4. For d = dMD and t such that 2b2tc ≤ m, there exists a vote pro�le π consisting of n/2
copies of each of the following rankings,

σ = (a1 � · · · � a b2t c ) � (a b2t c+1 � · · · � a2 b2t c ) � σ
A′

σ ′ = (a b2t c+1 � · · · � a2 b2t c ) � (a1 � · · · � a b2t c ) � σ
A′,

where A′ = A \ {a1, . . . ,a2 b2t c }, for which Bt (π ) = {σ ,σ ′}.

Proof. It is easy to see that σ ∈ Bt (π ) and σ
′ ∈ Bt (π ), as d (σ ,σ

′) = b2tc. We therefore need

to show that Bt (π ) does not contain any other rankings.

Let ρ ∈ Bt (π ), and consider its �rst-ranked alternative, a = ρ−1 (1). It holds that σ (a) ≥ b2tc + 1
or σ ′(a) ≥ b2tc + 1, because the two rankings place disjoint subsets of alternatives in the �rst b2tc
positions. Suppose �rst that the former inequality holds; then

d (ρ,σ ) ≥ σ (a) − ρ (a) ≥ b2tc .
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If ρ , σ ′ then d (ρ,σ ′) ≥ 1, and therefore

d (ρ,Bt (π )) =
d (ρ,σ ) + d (ρ,σ ′)

2

≥
b2tc + 1

2

> t .

It follows that ρ = σ ′. Similarly, if the la�er inequality holds, then ρ = σ . �

We are now in a position to prove �eorem 3.3.

Proof of Theorem 3.3. We address each of the four distance metrics separately.

�e Kendall tau distance. Let π and Bt (π ) have the structure speci�ed in Lemma A.1. For all

ρ ∈ L (A) and i ∈ [3], and every pair of alternatives a ∈ Ai , b ∈ Ai \ {a}, we can divide the rankings

in Bt (π ) into pairs that are identical except for swapping a and b. Note that for each pair, one

ranking agrees with ρ on a and b, and one does not. �erefore,

d (ρ,Bt (π )) ≥

∑
3

i=1

(
mi
2

)
2

=
b2tc

2

≥
d↓(2t )

2

.

�e footrule distance. Let π andBt (π ) have the structure speci�ed in Lemma A.2. For all ρ ∈ L (A)

and i ∈ [4], and for every alternative aji ∈ Ai , we can divide the rankings in Bt (π ) into pairs

that are identical except for swapping aji and a2mi+1−j
i . Note that for each such pair σ and σ ′,

|σ (aji ) − σ
′(aji ) | = 2mi + 1 − 2j, and using the triangle inequality,

|ρ (aji ) − σ (a
j
i ) | + |ρ (a

j
i ) − σ

′(aji ) | ≥ 2mi + 1 − 2j .

Furthermore, by the structure of Bt (π ), we know that

2mi∑
j=1

2mi + 1 − 2j =

⌊
(2mi )

2

2

⌋
.

By summing over all j ∈ [2mi ] and i ∈ [4], we get

d (ρ,Bt (π )) ≥

∑
4

i=1
∑

2mi
j=1 2mi + 1 − 2j

2

=

∑
4

i=1

⌊
(2mi )

2

2

⌋

2

=
d↓(2t )

2

.

�e Cayley distance. Let π and Bt (π ) have the structure speci�ed in Lemma A.3. For all ρ ∈ L (A),
and every pair of alternatives {ai ,a2 b2t c+1−i } for i ∈ [b2tc], we can divide the rankings inBt (π ) into
pairs τi and τ

′
i that are identical except for swapping a and b. Note that for each pair, one ranking

agrees with ρ on a and b, and one does not. Since each swap places at most two alternatives in their

correct positions, each of the b2tc pairs adds at least 1/2 tod (ρ,Bt (π )) becaused (ρ,τi )+d (ρ,τ
′
i ) ≥ 1.

Overall we have

d (ρ,Bt (π )) ≥
b2tc

2

≥
d↓(2t )

2

.

�e maximum displacement distance. Let π and Bt (π ) have the structure speci�ed in Lemma A.4.

Consider any ranking ρ ∈ L (A). Let a ∈ A be the alternative ranked �rst in ρ, i.e., a = ρ−1 (1). If
a ∈ {a1, . . . ,a b2t c }, then d (ρ,σ ′) ≥ b2tc. Similarly, if a ∈ {a2t+1, . . . ,a2 b2t c } then d (ρ,σ ) ≥ b2tc .
�erefore,

d (ρ,Bt (π )) =
d (ρ,σ ) + d (ρ,σ ′)

2

≥
b2tc

2

≥
d↓(2t )

2

.

�
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B PROOF OF THEOREM 4.11
Suppose for ease of exposition that

√
m ∈ Z. Let σ = (a1 � a2 � . . . � am ) be a ranking and

let L = {1, 2, . . . ,
√
m}, M = {

√
m + 1, . . . ,m −

√
m} and R = {m −

√
m + 1, . . . ,m}. De�ne the

ranking σi j for i ∈ L, j ∈ R to have σi j (ai ) = σ (aj ) and σi j (aj ) = σ (ai ) while σi j (ac ) = σ (ac ) for all
c ∈ [m] \ {i, j}. In other words, σi j is exactly σ with element i ∈ L and element j ∈ R swapped.

Construct a vote in π by selecting S ⊆ L, T ⊆ R with |S | = |T | = k , then selecting a perfect

matchingM : S → T , and �nally swapping each ai for i ∈ S with aj for j = M (i ). We have such a

vote for every choice of S and T , and every perfect matching between them. �is results in a vote

pro�le of cardinality

n = |π | = k!

(√
m

k

)
2

.

Let t = k + 1 − 2k
m . By construction d (τ ,σ ) = k for all τ ∈ π . It follows that d (π ,σ ) = k ≤ t , and

therefore σ ∈ Bt (π ).
We next claim that

d (σi j ,π ) ≤ k + 1 −
2k

m
= t .

It su�ces to consider two classes of rankings τ ∈ π . First, if τ (ai ) = j = σi j (ai ) and τ (aj ) = i =
σi j (aj ), then d (σi j ,τ ) ≤ k − 1, since reversing the other k − 1 pairwise swaps changes τ into σi j .
�ere are

n̂ =

(√
m − 1

k − 1

)
2

· (k − 1)!

such rankings in π . Second, for all other τ ∈ π , we have d (σi j ,τ ) ≤ k + 1, since it is always possible
to reverse the k pairwise exchanges that changed σ into τ ∈ π , and then perform one additional

exchange to put ai and aj into the correct positions. It follows that for all i ∈ L, j ∈ R,

dCY (σi j ,π ) ≤
1

|π |
(k − 1)n̂ +

1

|π |
(k + 1) ( |π | − n̂)

= (k + 1) +
(k − 1)n̂ − (k + 1)n̂

|π |
= (k + 1) −

2n̂

|π |

= (k + 1) − 2 ·

(√
m−1
k−1

)2
· (k − 1)!

|π |
= k + 1 −

2k

m
.

We conclude that {σ } ∪ {σi j : i ∈ L, j ∈ R} ⊆ Bt (π ).
We next show that this, in fact, fully describes Bt (π ). To show this, we must use the Hamming

distance, denoted dHM , which is de�ned as the number of positions at which two rankings of the

same length di�er. In particular, we use the relationship dCY (τ ,τ
′) ≥ 1

2
dHM (τ ,τ ′) between the

Cayley and Hamming distance metrics for all τ ,τ ′ ∈ L (A). �is is a direct result of the fact that a

single swap can place at most two alternatives in their correct positions.

For an arbitrary τ ′ ∈ L (A) we can decompose the Hamming distance metric as

dHM (τ ′,π ) =
1

|π |

∑
τ ∈π

dHM (τ ′,τ ) =
1

|π |

∑
τ ∈π

∑
i ∈[m]

I[τ (ai ) , τ
′(ai )]

=
∑
i ∈[m]

1

|π |

∑
τ ∈π

I[τ (ai ) , τ
′(ai )] =

∑
i ∈[m]

qi (π ,τ
′), (4)

where

qi (π ,τ
′) ,

1

|π |

∑
τ ∈π

I[τ (ai ) , τ
′(ai )]
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is the average penalty that ai incurs in τ
′
with respect to π under the Hamming distance metric.

Consider qi (π ,τ
′) for i ∈ L. If τ ′(ai ) = i , then qi (π ,τ

′) = k/
√
m since ai is swapped with an

alternative in the right endpoint in a k/
√
m fraction of the rankings in π . If τ ′(ai ) ∈ (L \ {i}) ∪M ,

then a penalty is incurred in every τ ∈ π , so qi (π ,τ
′) = 1. If τ ′(ai ) ∈ R, then qi (π ,τ

′) =
1 − (k/

√
m) (1/

√
m) = 1 − k/m.�e analysis for qi (π ,τ

′), i ∈ R is identical. For qi (π ,τ
′), i ∈ M,

observe that τ (ai ) = i for all τ ∈ π , so qi (π ,τ
′) = 0 if τ ′(ai ) = i and 1 otherwise.

It is clear from the decomposition and above discussion that τ ′ = σ is the unique ranking

minimizing dHM (τ ′,π ). We partition the rankings τ ′ ∈ L (A) according to their Hamming distance

from σ and analyze which rankings can appear in Bt (π ).

(1) dHM (τ ′,σ ) = 1: �e Hamming distance metric does not allow rankings at distance 1 from

each other.

(2) dHM (τ ′,σ ) = 2: We have shown that σi j ∈ Bt (π ). If τ ′ < {σi j : i ∈ L, j ∈ R}, then
d (τ ′,τ ) = k + 1 for all τ ∈ π and thus τ ′ < Bt (π ). �is is because the Cayley distance

between σ and any τ ∈ π is exactly k due to the k pairwise disjoint swaps described above,

and τ ′ involves an additional swap that is not allowed when transforming σ into τ ∈ π .
(3) dHM (τ ′,σ ) ≥ 3: For every ranking τ ′ ∈ L (A) at Hamming distance at least 3 from σ , it

holds that τ ′(ai ) , i for at least three values of i , and therefore at least three of the penalties
in Equation (4) are not minimal, meaning that they are at least 1 − k/m. Moreover, the

minimal penalty for i ∈ L ∪ R is k/
√
m. It follows that

dCY (τ
′,π ) ≥

1

2

dHM (τ ′,π )

≥
1

2

[
k
√
m
(2
√
m − 3) + 3

(
1 −

k

m

)]

= k +
3

2

−
3k

2m
−

3k

2

√
m

= k + 1 −
2k

m
+

(
1

2

+
k

2m
−

3k

2

√
m

)
≥ k + 1 −

2k

m
+

(
1

2

+
k

2m
−
1

2

)
= k + 1 −

2k

m
+

k

2m
> k + 1 −

2k

m
,

where the ��h transition follows from the assumption that k ≤
√
m/3.

We conclude that Bt (π ) = {σ } ∪ {σi j : i ∈ L, j ∈ R} and thus that |Bt (π ) | =m + 1.
To complete the proof, we show that every alternative has average position at least Ω(

√
m) in

Bt (π ). For every ai with i ∈ L, ai appears in position j ∈ R in

√
m of them + 1 rankings in Bt (π ).

�erefore the average loss of ai over Bt (π ) is at least

m + 1 −
√
m

m + 1
· 1 +

√
m

m + 1
·
m

2

= Ω(
√
m).

For i ∈ M , alternative ai never appears in position smaller than

√
m + 1 in Bt (π ) and clearly has

average position Ω(
√
m). Finally, for j ∈ R, alternative aj appears in position j in at leastm+1−

√
m

of the rankings in Bt (π ), and also has average position at least Ω(
√
m). �
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C ADDITIONAL EXPERIMENTAL RESULTS
We provide additional evidence that our experimental results of Section 5 do not depend on any

particular distance metric, dataset, or noise level. Speci�cally, the results for the footrule and

maximum displacement distance metrics (instead of KT and Cayley) under noise level 3 (instead

of 4) of the puzzle dataset (instead of dots) when returning a complete ranking are presented in

Figure 6, and the results for returning a subset of size 1 and 2 in Figures 7 and 8, respectively.

Although the results obtained from the puzzle dataset are somewhat noisier in general, it does

still hold that AVG
d
is more robust than MAX

d
to overestimates of t∗, as we concluded in Section 5

(with the exception of Figure 6a, as noted there).
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Fig. 6. Puzzle dataset (noise level 3), ranking output.
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Fig. 7. Puzzle dataset (noise level 3), subset output with z = 1.
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Fig. 8. Puzzle dataset (noise level 3), subset output with z = 2.
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