
Proceedings of the 2013 ORSSA Annual Conference
pp. 40–49

www.orssa.org.za/wiki/uploads/Conf/2013ORSSAConferenceProceedings.pdf

ORSSA Proceedings
ISBN

978-0-7972-1468-2
c�2013

The enumeration of k-sets of mutually
orthogonal Latin squares
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Abstract

Latin squares and sets of k mutually orthogonal Latin squares (k-MOLS) have application
in various scheduling problems, from providing e↵ective ways to access parallel memory
structures to scheduling transmissions from sensor arrays. MOLS also play an important
role in sports tournament scheduling where every structurally di↵erent MOLS provides the
scheduler with an additional degree of scheduling freedom. The existence of 3-MOLS have
been resolved for all orders of Latin squares, except for order 10. We consider a backtracking
algorithm for the enumeration of structurally di↵erent MOLS which partitions the search
space in such a way that it is possible to estimate bounds for the enumeration of higher-order
MOLS. A contribution towards the celebrated question of the existence of a 3-MOLS of order
10 is made by investigating the feasibility of using this algorithm in conjunction with specific
computing paradigms in search of such a design.

Key words: Enumeration, mutually orthogonal Latin squares (MOLS), volunteer computing.

1 Introduction

A Latin square of order n is an n ⇥ n array in which every cell contains a single symbol with
the property that each symbol occurs exactly once in each row and column of the array [6,
Definition 1.1], and two Latin squares are orthogonal if each of the n2 superimposed ordered
pairs of symbols, one pair for every (row, column)-position in the arrays, is distinct. Four
examples of Latin squares of order 4 may be seen in Figure 1. Note that all three pairs of Latin
squares from the set {L⇤

1, L
⇤
2, L

⇤
3} are orthogonal.
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Figure 1: Some Latin squares of order 4.

Latin squares were first formally studied by Leonard Euler when he considered the so-called
“36-O�cers problem” asking whether it is possible to arrange thirty-six soldiers of six di↵erent
ranks and from six di↵erent regiments in a square platoon with the properties that every row and
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column contains exactly one soldier of every rank and one soldier from every regiment1 [8]. Euler
was unable to find such an arrangement of soldiers (corresponding to a pair of orthogonal Latin
squares of order 6) and continued to propose what has become known as Euler’s Conjecture,
namely that no pair of orthogonal Latin squares of order n exists for n = 4m+2, where m is an
integer [8]. In 1900, the French mathematician Gaston Tarry proved Euler’s Conjecture correct
for n = 6, but sixty years later Bose, Shrikhande and Parker [4] showed that it is possible to
construct such orthogonal pairs for all cases of Euler’s Conjecture other than n = 6, thereby
disproving the conjecture in general.

The notion of orthogonality may be generalised to sets of k mutually orthogonal Latin squares,
abbreviated to k-MOLS, which have the property that any two distinct Latin squares in the
k-MOLS M = {L0,L1, . . . ,Lk�1} are pairwise orthogonal. The set M⇤

1 = {L⇤
1, L

⇤
2} is therefore

an example of a 2-MOLS of order 4, while the set M⇤
2 = {L⇤

1, L
⇤
2, L

⇤
3} is a 3-MOLS of order 4.

n k

2 3 4 5 6 7

3 1
4 1 1
5 1 1 1
6 0 0 0 0
7 7 1 1 1 1
8 2 165 39 1 1 1 1

Table 1: The numbers of struc-
turally di↵erent k-MOLS of or-
der n for n 2 {3, 4, . . . , 8}.

It has been shown that k-MOLS have important applications
in coding theory [16], various subfields of statistics (including
experimental design) [9, 10], distributed database systems [1]
and numerous scheduling problems, including the scheduling of
sports tournaments [11, 13, 20]. Moreover, every structurally
di↵erent set of orthogonal Latin squares provides the scheduler
with an alternative schedule, and some of these schedules may
be more desirable than others due to ad hoc constraints or
preferences in the scheduling problem. The known numbers
of structurally di↵erent k-MOLS for order n 2 {3, 4, . . . , 8}
appear in Table 1. Additionally, it is known that there are
19 structurally di↵erent 8-MOLS of order 9 [19] and that no
k-MOLS of order 10 exists for k 2 {7, 8, 9} [7, 15].

The objective in this paper is to consider an algorithm for the enumeration of structurally
di↵erent k-MOLS of order n, demonstrating the correctness of this algorithm by replicating
the known results in Table 1, and to produce estimates of the sizes of the search spaces for
3-MOLS of orders 9 and 10, which are yet to be enumerated. These estimates should shed light
on the current and short-term future feasibility of any further enumeration attempts using this
approach.

2 Mathematical preliminaries

Let S(L) denote the symbol set of a Latin square L and let R(L) and C(L) denote its row and
column indexing sets, respectively. For any i 2 R(L) and j 2 C(L), let L(i, j) 2 S(L) denote the
element in the i-th row and the j-th column of L. In the remainder of this paper it is assumed,
without any subsequent loss of generality, that R(L) = C(L) = S(L) = Zn, the set of residues
of the integers after division by the natural number n. The transpose of L, denoted LT , is the
Latin square for which LT (j, i) = L(i, j) for all i 2 R(L) and j 2 C(L). Note, for example, that
example, L⇤

1
T =L⇤

4.

The notion of a universal was introduced by Burger et al. [5] in 2010 to facilitate the enu-
meration of specific classes of Latin squares. A universal of a Latin square L is a set of n
distinct, ordered pairs (i, j), one from each row and column, all containing the same symbol.
Universals may be expressed in permutation form such that the universal permutation u` of
the symbol ` maps i to j if L(i, j) = ` and, as such, it is possible to find the cycle structure

1A similar and even older puzzle posed by Claude Gaspard Bachet in 1624 concerns the number of fundamen-
tally di↵erent ways in which the 16 court cards from a standard deck of cards may be arranged in a 4⇥ 4 square
such that every row and column contains a card of every rank and every suit [3].
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and inverse of any universal. The relative cycle structure of any pair of universals u1 and u2
of the same order is defined to be the cycle structure of u2 � u�1

1 , where � is the traditional
composition operator for permutations. In L⇤

2, for example, the entries in boldface correspond
to the universal {(0, 1), (1, 3), (2, 2), (3, 0)} of the symbol 1, which may be written in permuta-
tion notation as

�0 1 2 3
1 3 2 0

�
, abbreviated here as h1320i. Let U(M) denote the set of universal

permutations of some k-MOLS M, and let u`(m) 2 U(M) denote the universal permutation
of the symbol ` in the m-th square Lm 2 M. The set of all universals of M⇤

1 is therefore
U(M⇤

1) = {h0312i, h1203i, h2130i, h3021i, h0231i, h1320i, h2013i, h3102i}, while the universal per-
mutation of the symbol 2 in the third Latin square of M⇤

2 is u2(2) = h2301i. The relative cycle
structure of u0(1) 2 U(M⇤

1) and u3(0) 2 U(M⇤
1) is the cycle structure of the permutation

h3021i � h0231i�1 = h2013i, which may be denoted as z11z
1
3 as it consists of one cycle of length 1

and one cycle of length 3.

Latin squares which can be generated from one another by changing the order of their rows
and/or columns, and/or by renaming their symbols, are said to be isotopic, while Latin squares
formed by uniformly applying a permutation to all n2 3-tuples (i, j,L(i, j)) are called conjugates.
For example, applying the permutation

�0 1 2
1 0 2

�
to the 3-tuple (i, j,L(i, j)) yields the transpose

(j, i,L(i, j)) of L. A maximal set of isotopic Latin squares, together with all their conjugates,
form a main class of Latin squares. It is possible to show that L⇤

1, L
⇤
2, L

⇤
3 and L⇤

4 are all in the
same main class by reordering the rows of L⇤

1 to find L⇤
2, transposing L⇤

1 to form L⇤
4 and, finally,

reordering the columns of L⇤
4 to form L⇤

3.

The notions of isotopic and conjugate Latin squares, as well as that of main classes, may be
extended to k-MOLS. All k-MOLS which may be generated by row, column and symbol per-
mutations from a given k-MOLS are isotopic, with the additional constraint that the same row
or column permutation must be applied to all k Latin squares in the k-MOLS in order to main-
tain orthogonality (the symbol sets, however, may be renamed independently). Conjugates,
in this case, are k-MOLS formed by uniformly applying permutations to the (k + 2)-tuples
(i, j,L0(i, j), . . . ,Lk�1(i, j)) and a main class consists of a given k-MOLS, together with its
(k + 2)! conjugates as well as their respective isotopic k-MOLS.

It is possible to define a lexicographical ordering, denoted by the symbol �, on a main class
of k-MOLS by comparing the universals lexicographically in such a way that every main class
has a unique smallest element, called the class representative. Two k-MOLS, M and M0 are
ordered in this way by comparing corresponding universals, starting with u0(0) 2 U(M) and
u00(0) 2 U(M0), followed by u0(1) 2 U(M) and u00(1) 2 U(M0), etc. until it is either found
that the one k-MOLS is lexicographically smaller than the other, or until all universals have
been compared, in which case M and M0 are lexicographically equal and therefore the same
k-MOLS. For example, when comparing the two 2-MOLS M⇤ = {L⇤

1,L
⇤
2} and M⇤0 = {L⇤

1,L
⇤
4}

of order 4, it is seen that u0(0) = u00(0), u0(1) = u00(1) and u1(0) = u01(0) but u1(1) = h1320i �
u01(1) = h2013i, implying that M⇤ � M⇤0.

3 Exhaustive enumeration of k-MOLS

An exhaustive enumeration of k-MOLS of order n may be carried out by the orderly genera-
tion of the class representatives of every main class. The pseudo-code of such an enumeration
procedure is given as Algorithm 1. A backtracking tree-search is implemented in Algorithm 1
for constructing k-MOLS of order n, one universal at a time, in such a way that, for i 2 Zn

and m 2 Zk, the active nodes on level i.m of the search tree correspond to the lexicographically
smallest partial k-MOLS whose Latin squares L0, . . . ,Lm each contains i + 1 universals and
whose Latin squares Lm+1, . . . ,Lk each contains i universals. The inactive nodes in the search
tree represent those partial k-MOLS which cannot be completed to a class representative or in
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which the partial Latin squares are no longer pairwise orthogonal. On level i.(k�1) of the search
tree the universal for the symbol i has been inserted in all the Latin squares L0, . . . ,Lk�1 of the
partial k-MOLS and the next universal to insert is ui+1(0); as this level marks the completion
of the partial k-MOLS up to the symbol i, it is also referred to simply as level i.

Suppose that the partial k-MOLS P has been constructed on level i.` of the search tree, in other
words, the next universal to insert into P is ui(`+ 1), or ui+1(0) if ` = k � 1. Let U(P) be the
set of all universals in the partial k-MOLS P, U(P`+1) the set of all universals in P, excluding
the universals of L`+1 (the Latin square into which a universal is currently being added) and
denote the set of feasible candidate universals by C(P). The node in the search tree representing
P thus has |C(P)| children, any number of which may be inactive.

To verify orthogonality in a child P [ c of P, for some candidate universal c 2 C(P), it is
necessary to confirm that the relative cycle structure of c and every permutation p 2 U(P`+1)
has exactly one fixed point. The following result by Kidd et al. [12, Theorem 4.3.2] provides an
easy way of determining whether a partial k-MOLS M is the lexicographically smallest partial
k-MOLS in its main class.

Theorem 1 [12, Theorem 4.3.2] If M = (L0, . . . ,Lk�1) is the lexicographically smallest k-
MOLS of order n in its main class, then (a) u0(0) is the identity permutation, (b) u0(1) is a
cycle structure representative, and (c) the relative cycle structure of two universal permutations
ui(j), u`(m) is not lexicographically smaller than the cycle structure of u0(1) 2 U(M) for all
i, j 2 Zn and j,m 2 Zn.

According to Theorem 1 (a) and (b) there is a very limited number of feasible zero universals in
L0 and L1, and by Theorem 1 (c) no relative cycle structure calculated while verifying orthog-
onality may be smaller than the cycle structure of u0(1) if P [ c is to be the lexicographically
smallest partial k-MOLS in its main class.

If P [c passes this test, then all possible pairs of universals ua(j), ub(m) in P [c or its transpose
(P[c)T with a relative cycle structure equal to the cycle structure of u0(1) are mapped to the pair
of universals u0(0), u0(1) to form a new partial k-MOLS (P [ c)0 in the same main class, which
is then subjected to a restricted number of row, column and symbol permutations in an attempt
to find a lexicographically smaller partial MOLS. More specifically, in order to ensure that the
universal u0(0) in (P[c)0 remains unchanged, it is necessary to apply any potential permutation

Algorithm 1: enumerateMOLS(P)

input : A partial k-MOLS P
output: All completed class representatives in the subtree rooted at P

1 begin

2 if P is complete then

3 if none of the conjugates of P has smaller isotopics then
4 output P as class representative
5 return

6 else

7 return

8 for every candidate universal c do

9 if c preserves orthogonality and is valid by Theorem 1 (c) then
10 if P [ c has no smaller isotopic k-MOLS then

11 enumerateMOLS(P [ c)
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to both the row and column indices. However, for u0(1) with cycle structure z1z
n2
2 . . . z

np
p to

be una↵ected by the permutations, the set of potential permutations is restricted to only theQip
i=1 i

nini! permutations that are found by rotating and reordering the cycles of u0(1). This
step of the enumeration process, referred to in line 10 of Algorithm 1, is called the isSmallest
test. If such a smaller partial MOLS is found, the node representing P [ c becomes inactive
and the next candidate universal is inspected for insertion into P. Otherwise, a new list of
candidate universals are generated for insertion into P [ c and the search restarts one level
lower down the tree. Whenever there are no more candidate universals to inspect, the search
returns to the previous level. For a completed k-MOLS P on level n � 1, the mappings and
transformations described above are performed on all of the conjugates of P to confirm that
none of these conjugates have a lexicographically smaller isotopic k-MOLS than P.

This enumeration process for 2-MOLS of order 5 is represented in Figure 2 (the same example
may be found in [12]). According to Theorem 1, u0(0) must be the identity permutation and
u0(1) a cycle structure representative, of which there are two possibilities for order 5, namely z1z22
and z1z4 (note that there must be exactly one 1-cycle to ensure orthogonality with the identity
permutation). Two partial k-MOLS are said to be in the same section of the search tree if
the respective u0(1) universals are the same cycle structure representative; the enumeration of
2-MOLS of order 5 therefore consists of two sections. Where branches become inactive it is
indicated that either (a) no candidate universals preserve orthogonality, (b) a lexicographically
smaller partial MOLS has been found in the same main class, or (c) a class representative has
been found. One 2-MOLS is found in the section of z1z21 and no structurally di↵erent 2-MOLS is
found in the section of z1z4, although a completed candidate 2-MOLS is uncovered which, upon
inspection, is shown to be in the same main class as the first one, but lexicographically larger.

The known results in Table 1 were replicated in a validation attempt and details on the enumer-
ation results for 3-MOLS of order 8 are given in Table 2. The number of active nodes found on
every level is identical to that found by Kidd [12], while the serialized runtime has been improved
from approximately 36 days to just under 10 days, although this improvement may be partially
due to the use of di↵erent computing platforms. There are 45 active nodes on level 0 (after all of
the zero universals have been inserted and an isSmallest test has been performed) and these
nodes were given as the starting positions from which all of the subtrees were enumerated. It
was found that there are 259 and 1 700 active nodes on level 0 of the search trees for orders 9
and 10, respectively, which may be partitioned into 7 and 8 sections, respectively. Interestingly,
the runtime increased from 6 seconds for the enumeration of 3-MOLS of order 7 to just under 10
days for the 3-MOLS of order 8, raising serious concerns over the feasibility of the enumeration
of 3-MOLS of order 9 and higher.

Section Level Time (s)

0 1 2 3 4 5 6 7

z1z22z3 17 12 501 028 1 484 518 094 18 814 494 55 23 22 20 775 321
z1z12z5 14 3 358 273 61 708 802 63 157 97 92 84 17 60 011
z1z3z4 5 52 059 5 283 1 0 0 0 0 93
z1z7 9 37 403 9 079 82 64 53 53 2 111

Total 45 15 948 763 1 546 241 258 318 877 734 216 168 159 39 835 537

Table 2: The number of active nodes in every section and on every level of the search tree for
enumerating 3-MOLS of order 8, together with the time in seconds that the enumeration of
every section took on a 3.2 GHz processor with 8 Gb of RAM.
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Figure 2: The backtracking enumeration search tree for 2-MOLS of order 5. At every leaf
it is either indicated that (a) no candidate universals preserve orthogonality, or that (b) a
lexicographically smaller partial MOLS has been found in the same main class, or that (c) a
class representative has been found.
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4 On the enumerability of larger order search spaces

In order to determine the feasibility of enumerating 3-MOLS of orders 9 and 10, the algorithm
was modified so that it only examines MOLS that are isotopic to a partial MOLS P after
universals of the i-th symbol have been inserted into every Latin square in P. Although this
increases the total number of branches of the search tree that survive to level i, it decreases
the total number of isSmallest tests performed during the enumeration, as all branches that
would otherwise have been pruned earlier must necessarily have been subjected to at least one
isSmallest test. Furthermore, the e↵ect on the search tree as a whole is minimised, as the exact
same number of branches will pass the isSmallest and proceed to the next symbol. The sizes
of the subsequent search trees for orders 9 and 10 were approximated by estimating the total
number of nodes in the absence of the isSmallest test before applying the expected pruning
e↵ect of the isSmallest test to determine the number of active nodes on every level of the tree.
Finally, a small number of nodes from one of these levels were used as starting points for the
enumeration algorithm so that the total time it would take to traverse the entire trees could be
estimated. The enumeration tree for 3-MOLS of order 8 was also traversed to determine the
average number of universals that preserve orthogonality and are valid by Theorem 1 (c), i.e.
the universals that pass the test on line 9 of Algorithm 1, for partial 3-MOLS on di↵erent levels
of the search tree.

It was found that that this average number of feasible candidate universals, which corresponds
to the number of children of a node representing any partial 3-MOLS on level i.` for ` 2 Zk�1,
depends sensitively on the cycle structure of u0(1), but remains largely constant within a given
section of the tree. Evidence of this may be seen for the 45 active nodes on level 0 of the
enumeration tree for 3-MOLS of order 8 in Figure 3 for the two sets of universals u1(j) and
u2(j) with j 2 Zk. Notice in the figure, that the average number of feasible candidate solutions
decreases with every additional universal in P as it becomes harder to preserve orthogonality.
This regularity in the number of children of a node of the search tree, as well as its sensitive
dependence on the cycle structure of u1(0) was also observed in the search trees for 3-MOLS of
orders 7, 9 and 10.

These properties make it possible to estimate the average number of children of any partial
3-MOLS by only examining a very small random selection of partial 3-MOLS that are on the
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Figure 3: The average number of feasible candidate universals ui(j) found for i = 1, 2 and
j 2 Zk in the enumeration of 3-MOLS of order 8 for each of the 45 partial 3-MOLS which pass
the isSmallest test on level 0 of the search tree. The dashed lines indicate in which section
the starting position resides, i.e. whether the permutation u0(1) in the initial partial 3-MOLS
has the cycle structure z1z22z3, z1z2z5, z1z3z4 or z1z7, in that order.
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Order 8 Order 9 Order 10

Actual Estimated Estimated Estimated

Level 1 2.61⇥ 107 2.60⇥ 107 5.79⇥ 1010 2.41⇥ 1014

Level 2 4.34⇥ 109 3.74⇥ 109 3.39⇥ 1015 9.67⇥ 1021

Level 3 9.96⇥ 108 9.31⇥ 108 2.15⇥ 1016 —

Table 3: A comparison of the actual and estimated total num-
ber of nodes on levels 0, 1, 2 and 3 of the search tree for 3-MOLS
of order 8, together with similar estimates for orders 9 and 10.

n 6 7 8

Level 0 0.15 0.07 0.03
Level 1 0.55 0.48 0.57
Level 2 0 0.54 0.51

Table 4: The proportions
of nodes which pass the
isSmallest test on levels 0, 1
and 2 for 3-MOLS of orders 6,
7 and 8.

same level and in the same section of the tree. This process was repeated on every level of the
tree in order to estimate the total number of nodes in the search tree for 3-MOLS of orders 8,
9 and 10. This estimate proved to be fairly accurate for order 8, as may be seen in Table 3.

In order to estimate the number of active nodes on levels 1 and 2 of the search tree, the pruning
e↵ect of the isSmallest test must be applied to these estimated total numbers of nodes on every
level of the tree. Let pi denote the percentage of partial 3-MOLS which pass the isSmallest

test on level i. The values of p0, p1 and p2 for orders 6, 7 and 8 may be seen in Table 4. Notice
that less than 10% of the nodes on level 0 are active, and that this value is approximately 50%
for levels 1 and 2. Based on this evidence, the numbers of active nodes on levels 1 and 2 of
the search trees for orders 9 and 10 were estimated for three values of p = p1 = p2, specifically
p = 0.5 together with expected over and under estimate values, p = 0.4 and p = 0.6. Note that
the pruning e↵ect is carried forward through the tree, i.e. if p = 0.5, then 50% of the nodes on
level 1 are considered inactive, which implies that half the nodes on level 2 would not have been
reached at all so that only 25% of the total number of nodes on level 2 are considered active. For
order 9 the number of active nodes of level 1 (i.e. the number of partial 3-MOLS with all 0 and
1 universals filled in which pass the isSmallest test) is estimated to be between 2.32⇥1010 and
3.47⇥ 1010, depending on the value of p, and for order 10 this number grows to approximately
1.21⇥ 1014. The remainder of the estimated numbers of active nodes may be found in Table 5.

To gather insight into the potential total runtime of the enumeration algorithm for 3-MOLS
of orders 9 and 10, a representative sample of active nodes on level 1 of the respective search
trees was used as starting points for Algorithm 1, after which the number of active nodes
was multiplied by the weighted average time to completion. To enable comparison between
computing systems of di↵erent speeds the estimated time to completion is expressed in GHz-
days, the number of days that a single 1Ghz processor would take to complete the computation.
It is expected that a complete enumeration of 3-MOLS of order 9 would take approximately
5.64⇥ 108 GHz-days, while for order 10 this is expected to take approximately 1.42⇥ 1018 GHz-
days (these estimates may also be found in Table 5).

5 Conclusion

The serialized estimated enumeration time on a single 3.2 GHz core of 465 219 years for 3-
MOLS of order 9, and 1.17 ⇥ 1014 years for order 10 is currently beyond the capabilities of
most research computing clusters. For example, the high performance cluster, Rhasatsha, at
Stellenbosch University currently consists of a hundred and thirty six 2.83 Ghz cores, thirty
two 2.4 Ghz cores and three hundred and seventy six 2.1 GHz cores for a daily maximum
throughput of approximately 1 250 GHz-days. The performance of this cluster is dwarfed by,
for example, the Great Internet Mersenne Prime Search (GIMPS), a distributed computing
project which makes use of volunteers’ computing power to find extremely large prime numbers
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Order 9 Order 10

p 0.4 0.5 0.6 0.4 0.5 0.6

Level 1 2.32⇥ 1010 2.89⇥ 1010 3.47⇥ 1010 9.65⇥ 1013 1.21⇥ 1014 1.44⇥ 1014

Level 2 5.43⇥ 1014 8.48⇥ 1014 1.22⇥ 1015 1.55⇥ 1021 2.42⇥ 1021 3.48⇥ 1021

Level 3 1.37⇥ 1015 2.68⇥ 1015 4.64⇥ 1015 — — —

Time 4.51⇥ 108 5.64⇥ 108 6.77⇥ 108 9.11⇥ 1017 1.42⇥ 1018 2.05⇥ 1018

Table 5: The estimated total number of active nodes on di↵erent levels of the search tree for
the enumeration of 3-MOLS of orders 9 and 10, as well as the estimated time (measured in
GHZ-days) that the enumeration would take.

[17] and Seti@Home, a distributed project examining large datasets for signs of extraterrestrial
intelligence [2]. GIMPS has an average daily throughput of approximately 100 000 GHz-days
[17], while SETI@Home averages 362 000 GHz-days daily [2]. If the enumeration of k-MOLS
were to take place with the computing power that is available to these distributed projects, the
enumeration of 3-MOLS of order 9 would take approximately 15.5 years (at 100 000 GHz-days
daily) and it would be possible to answer the celebrated question of the existence of 3-MOLS of
order 10 in approximately 3.9⇥ 1010 years. These estimates ignore the fact that the computing
power of desktop computers, which are indispensable to distributed computing projects, have
been estimated to double every 1.5 years over the last five decades [14, 18]. Assuming that this
rate of growth continues, a distributed computing project of the scale of GIMPS may enumerate
the 3-MOLS of order 9 in as little as 4.5 years, and the 3-MOLS of order 10 in approximately
51 years.

The enumeration of 3-MOLS of orders 9 and 10 therefore seems to be feasible as part of a
long-term distributed, volunteer computing project. Moreover, the enumeration attempt would
benefit greatly from a significant technical breakthrough in computing power or an important
theoretical breakthrough (such as the design of a very e↵ective pruning rule for the search tree or
a speed-up of the isSmallest test). To resolve the question of the existence of 3-MOLS of order
10, however, it is only necessary to find a single 3-MOLS, making the estimated enumeration
time a worst-case scenario that will only be reached if no 3-MOLS of order 10 exists.
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