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Top-k personalized recommendations are ubiquitous, but do they make stable matches? We study whether,

given complete information, buyers and sellers would participate in matches formed by top-k recommen-

dations instead of pursuing alternative matches among themselves. When there are no constraints on the

number of times an item is recommended, we observe that top-k recommendations are stable. When expo-

sures are constrained, e.g., due to limited inventory or exposure opportunities, stable recommendations need

not exist. We show that maximizing total buyer welfare is closely related to stability. Maximizing welfare

under unit exposure constraints is stable, Pareto optimal and swap-envy free for orthogonal buyers, identical

buyers, and buyers with dichotomous valuations. Most of these properties remain under arbitrary exposure

constraints. Finally, we evaluate variants of common strategies for recommending under exposure constraint

and find that they leave room for substantial instability and envy in three real-world datasets. Among them,

maximizing buyer welfare leads to the most stable outcomes and near-zero swap-envy.

1. Introduction

Recommender systems facilitate markets by matching buyers to products (and their sellers) in large

online platforms. They do so by learning buyers’ preferences from past ratings and recommending

to each buyer a subset of products she would like, from which the buyer may choose one. Such

recommendations focus buyers’ attention and cut down the number of costly product evaluation

they need to do. Traditionally, recommender systems have focused on satisfying buyers, with the

implicit assumption that matching buyers to products they like also benefits sellers by increasing

sales and attracting more buyers to the market.

Recent research, however, questions this assumption. Buyer-focused recommendations can con-

centrate sales on popular sellers and increase inequities (Fleder and Hosanagar 2009). This endan-

gers marketplaces employing them, since disgruntled sellers may withdraw inventory and target

buyers through off-platform channels. As a result, there are calls to design recommender systems

that serve all stakeholders — buyers, sellers, and the platform (Abdollahpouri et al. 2020).

Such systems must exhibit multi-sided fairness while respecting different stakeholders’ con-

straints. For example, recommending a physical good to more buyers than the number of copies

a seller has can result in a costly stock-out. On platforms like ad-networks and retail-websites
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that provide sponsored product placements (e.g., Amazon.com) exposure is a limited resource.

Contracted exposure obligations limit how many times a seller can be recommended to potential

buyers. Sellers, in turn, would like scarce exposures to target those buyers who give them the best

chance of sales.

Against this backdrop, we take inspiration from the matching literature to study the stability

of markets formed by recommender systems. In traditional matching markets (e.g., students-to-

schools or interns-to-hospitals), each side has a preference over the limited resource available on the

other (e.g., seats and students) which can lead to instability unless carefully matched (Roth and

Sotomayor 1990). Recommendations, likewise, engage customers’ limited attention and consume

sellers’ limited exposure opportunities. Two-sided preferences over these limited resources create

incentives to find better recommendations.

Stability is important in traditional (offline) matching markets. A high cost of discovery and

incomplete information can let the market operate for some time, but unstable markets even-

tually unravel due to persistent incentives (Roth 1984a, 2015). Discovery is easier with digital

platforms. Competition among digital platforms facilitates multi-homing and other forms of off-

platform transactions (Bryan and Gans 2019, Bakos and Halaburda 2020). As in offline markets,

a digital platform relying on unstable matches risks its users migrating to alternatives.

In this context, the central question we study is

“Are personalized recommendations stable?”

More specifically, would buyers and sellers, given complete information on preferences and con-

straints on both sides, participate in a platform using a personalized recommender system? Or

may some prefer to pursue off-platform matches and transactions among themselves? If these mar-

kets are unstable, how can we design personalized recommender systems to mitigate the risk of

unravelling?

1.1. Our Contributions

We study a setting in which each of a batch of buyers is simultaneously recommended k items, and

each item is subject to a constraint on the number of times it is recommended. The simultaneous

presence of multiple buyers and sellers (thickness) and their interactions are essential properties

of markets (Roth 2007). On large online platforms multiple buyers have active shopping sessions

at any time, permitting batch recommendation. Meanwhile, cognitive capacities limit how many

items buyers can consider at a time. Recommendation channels (web pages, emails, etc.), too, have

limited usable space. Therefore, recommender systems present a small fixed number of (3–10) items

to a buyer at a time. This is the type of recommendation we study.
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We start with McFadden (1973)’s choice model for the behaviour of a buyer who is recommended

a set of items (or choice set). Under this, a buyer’s utility for an item consists of two components.

The first component can be estimated by the platform at the time of recommendation, for example,

from the buyer’s prior interactions using a learning algorithm like a collaborative or content-based

filter. The second, random, component is unknown to the platform and buyer at the time of

recommendation and manifests after careful consideration of the product — a process which takes

the buyer time and effort (Shugan 1980, Alba and Hutchinson 1987).1

We investigate three properties towards robust recommendations: stability, Pareto optimality

and a form of envy-freeness. Pareto optimality (PO) of buyer utilities ensures efficiency: increasing

the utility of any buyer comes at the cost of another. Envy-freeness says that no buyer prefers

the recommendations made to another over her own. Since envy-freeness cannot be guaranteed for

indivisible goods, we propose a relaxation suitable for k-recommendation called swap-envy-freeness

up to one good (SEF1) which allows for envy but only to the extent that it can be eliminated by

exchanging a pair of recommended items. Stability requires that buyers and sellers would prefer

to be matched per the recommendations of the system rather than make side-deals (Roth and

Sotomayor 1990). We call a recommendation profile (the collection of recommendations to all

buyers) stable if there is no buyer-seller pair who would both strictly benefit from being paired

based on the known utility components. As a result, this (ex-ante) stability is a property of the

platform’s recommendations.

We study the existence of stable recommendations in Section 3. In the absence of exposure

constraints, when each item can be recommended an arbitrary number of times, we observe that

top-k recommendations are stable, envy free, and Pareto optimal. Limiting the item exposures,

however, may make it impossible to find a stable recommendation (Theorem 1). We show that any

potential gain from deviating from the platform’s recommendations, for both buyers and sellers, is

a result of disparities in buyers’ valuations of items and the values of their choice sets. In fact, the

gain can be (tightly) upper bound by the product of two factors that measure these differences.

In Section 4 we study the properties of buyer welfare maximizing recommendations and show

it is intrinsically linked to stability. Maximizing welfare is provably stable when there are no k-

constraints on the size of the recommendation set (Theorem 3). In Sections 4.2 and 4.3 we study

recommendations under unit exposure constraints in two restricted preference domains: identical

preferences, as might be the case with commonly agreed item qualities, and dichotomous values,

1 Often, the unknown “error” component stands for the component unobserved by the econometrician (see, for
example, Manski (1977)). Our framing, in which even a buyer may not know her own precise utility beforehand due
to lack of complete product knowledge and variations across consumption occasions is compatible with this view and
is in line with what is known in consumer psychology literature (see, for example Hauser and Wernerfelt (1990)).
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where each buyer deems each item to have either high or low value. In both settings, maximizing

the total expected buyer utility leads to stable, Pareto optimal and SEF1 k-recommendations.

Notably, maximizing expected buyer utility under our choice model is equivalent here to maximizing

the Nash welfare with respect to the exponentiated utilities, which has several attractive fairness

properties (Caragiannis et al. 2019).

These results are extended to arbitrary upper bounds on the number of times an item is recom-

mended, with some caveats. Stability is not guaranteed for identical buyers in general (Example 3),

though maximizing the buyer welfare remains PO and SEF1 (Theorem 5). In the dichotomous

value setting, swap-envy-freeness is not guaranteed (Example 4), but maximizing buyer welfare

remains stable and PO (Theorem 7).

Absent the guarantee of stable k-recommendations for arbitrary preferences, we propose alter-

native benchmark recommendation algorithms under exposure constraints in Section 5. We show

round robin recommendations are SEF1 under unit exposure constraints (Theorem 8). Greedy

top-k recommendations, which is suitable for online decision making, is not stable, PO or SEF1.

Finally, we outline how any batch recommendation algorithm can be deployed in an online manner

when users arrive and receive recommendations one at a time, rather than in batches.

We conclude with a computational study using datasets from Amazon and Rent-the-runway. The

algorithms all result in unstable recommendations in which a large fraction of participants have

some incentive to deviate from the platform’s recommendations. The magnitude of this incentive,

as an improvement over the participant’s current utility, range from as high as 150% for greedy

top-k to only 8% for the welfare maximizing recommendations.

Our theoretical and computational results suggest that platforms worried about participants

pursuing off-platform transactions should maximize buyer welfare. It is provably stable in some set-

tings and, even when stable recommendations can not be guaranteed, leads to the lowest incentive

to deviate from the platforms recommendations.

1.2. Related Work

This paper builds on ideas from recommender systems, matching, and fair division. We briefly

discuss the closest work from each.

Multi-stakeholder recommendations, which consider multiple buyer, seller and platform prefer-

ences, have become increasingly popular (Burke et al. 2016, Nguyen et al. 2017, Abdollahpouri et al.

2020). Fair recommendation in this context considers multiple stakeholders’ objectives (Ekstrand

et al. 2022, Abdollahpouri and Burke 2019, Patro et al. 2020). Fair allocation is difficult to achieve

under one-shot recommendation, though proportional fairness may be achieved considering rec-

ommendations over time (Chakraborty et al. 2017). Bateni et al. (2022) propose a stochastic
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approximation scheme based on the Eisenberg-Gale convex program for an online advertising sys-

tem which maximizes platform revenue while being approximately fair towards buyers. Patro et al.

(2020) propose a greedy version of round robin which is shown to be envy-free up to one good

(EF1) for buyers and guarantees sellers some exposure. In the context of recommending bundles

to groups that consume them together, Serbos et al. (2017) show that maximizing fairness towards

all members of a group is NP-hard and offer greedy approximation algorithms.

Questions of fairness become salient when buyers or sellers face constraints. Recommendation

under capacity or exposure constraint has been studied, generally to maximize sales (Makhijani

et al. 2019) or user utility (Sürer et al. 2018)—rarely to unpack participation incentives. Studying

incentives, Tennenholtz and Kurland (2019) point out that the standard relevance based ranking

by content recommender systems can encourage homogeneous content. Related work offers Shapley

value based probabilistic recommendations as a solution (Ben-Porat and Tennenholtz 2018). In one

of the few papers in the recommendations literature that uses stable matches, Eskandanian and

Mobasher (2020) propose a deferred acceptance algorithm to diversify recommendations. We add to

this growing body of literature by going beyond fairness, by asking if the participants will have the

incentive to participate in a match produced by recommender system, under a one-shot matching

scenario. Drawing inspiration from the Eisenberg-Gale program, we find preference domains where

the interests of buyers and sellers can be aligned.

There is a rich literature on stable matchings dating back to the 1950’s (Stalnaker 1953, Gale

and Shapley 1962). Roth and Sotomayor (1990) and Abdulkadiroglu and Sönmez (2013) offer

thorough treatments of the topic. Recommending k items to a buyer reminds of many-to-one

and many-to-many matchings. In many-to-one worker-firm or college admissions matching workers

(students) are matched to firms (colleges), sometimes subject to quotas on the number of matches.

When preferences satisfy a substitutability condition and when workers’ preferences depend only

on the firm they apply to, not their colleagues, stable matchings exist (Kelso and Crawford 1982,

Echenique and Oviedo 2006).2 In fact, in traditional firm-proposing deferred acceptance schemes

used to find stable match (e.g., Roth (1984b)), a worker can safely reject all but the top proposing

firm since her preference over firms is assumed not to depend on colleagues, which allows stability.

This assumption does not hold for sellers when a buyer chooses one of k recommended items: the

probability that an item is selected depends on the other k−1 items. Thus, in k-recommendations,

a seller can not accurately judge the attractiveness of being recommended to a buyer until the

other k− 1 items in that buyer’s choice set are fixed.

The literature on matching with externalities is most relevant to us. Three stability notions of

increasing strength, which Bando et al. (2016) call conservative, pairwise and optimistic stability,

2 Informally, preferences are substitutable if each item chosen from a set is also chosen from a subset that includes it.
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have been proposed. Sasaki and Toda (1996) show that conservative stability (the weakest of the

three) can be guaranteed in one-to-one settings by using a standard deferred acceptance algorithm

on transformed preferences. A similar argument guarantees conservative stability in our many-to-

many setting. The bulk of the literature focuses on pairwise stability in various settings, including

sufficient conditions for existence (Mumcu and Saglam 2010) and many-to-one matching with

externalities over firms (Bando 2014, 2012, Echenique and Oviedo 2004). Many-to-one matching

with preferences over colleagues is similar to recommendations in which sellers have preferences

over their competition in a choice set. Dutta and Massó (1997) show that if preferences over firms

and colleagues satisfy a fairly restrictive lexicographic ordering condition a pairwise stable match

exists. We also study pairwise stability, and note this condition is unlikely to hold when seller-

side preferences are induced by a choice model. Echenique and Yenmez (2007) offer algorithms

to compute stable matches when they exist under preferences over colleagues. Pycia (2012) show

that when there is substantial variability of preferences, stable coalitions can be guaranteed only

when the common members in a pair of coalitions prefer the same coalition. More recently, Pycia

and Yenmez (2022) study stability under externality over agents outside of the matched group and

show existence under a specific monotone externality property.

In the fair division literature, envy-free allocations (Foley 1967) and relaxations thereof (Lipton

et al. 2004) have been studied for divisible (Brams and Taylor 1995, Procaccia 2016) and indi-

visible goods (Alkan et al. 1991, Lipton et al. 2004, Caragiannis et al. 2019) in both static and

dynamic settings (Benadè et al. 2018, Zeng and Psomas 2020, Benadè et al. 2022). The concept of

Nash welfare, or the product of agent utilities, originated in John Nash’s solution to a bargaining

problem (Nash 1950). Maximizing Nash welfare when allocating indivisible goods among agents

with additive utilities is known to be EF1 and PO (Caragiannis et al. 2019). Maximizing Nash

welfare is typically NP-hard; Caragiannis et al. (2019) propose a computational approach which

scales to reasonably sized instances. The notions of balance and impartiality we use in Section 3

also appear in Huang et al. (2022).

Two-sided fairness has recently received attention in the fair division literature (Gollapudi et al.

2020, Freeman et al. 2021, Igarashi et al. 2022). Caragiannis and Narang (2022) independently

propose envy-freeness up to a single exchange of items in a setting where goods and chores are

repeatedly matched to agents and find that a variation of round robin allocation adapted for

repeated matchings is both EF1 and SEF1. We make a similar observation for round robin allo-

cations in Section 5.1 and further show that maximizing expected buyer welfare is also SEF1. In

the context of matching teams to players, Igarashi et al. (2022) propose two stability notions. An

allocation is swap stable when there are no two players in two different teams so that swapping the

players makes at least one of the four parties better off while leaving none worse off. An allocation
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is individually stable when no player can deviate to another team without making one of the teams

involved worse off. In keeping with the original stable marriage problem (Gale and Shapley 1962)

and the notion of pairwise stability as studied in the context of matching with externalities, we

require only that the deviating buyer and seller are strictly better off, not that the other parties

involved are no worse off.

2. Model Formulation

Let B denote a set of n buyers and I a set of m items. We assume that every item is sold

by a different seller and occasionally blur the distinction between recommending an item and

recommending a seller.

A (k−)recommendation to buyer b∈B is a set of k unique items Āb ⊆I, |Āb|= k. Additionally,

buyer b has (fixed) outside option ωb, which represents not selecting any of the recommended

items and instead sticking with the status quo, continuing searching, or selecting an item not

available on the platform. Let Ab = Āb ∪ {ωb} be the choice set of buyer b. We call the vector of

recommendations A= (Ab)b∈B a recommendation profile. The buyers who are recommended item i

are denoted A−1
i = {b∈B : i∈Ab}.

Let A denote the set of feasible recommendation profiles. A recommendation profile is feasible if

it satisfies constraints on the number of exposures received by each item, encoded as |A−1
i | ≤ ci for

all i ∈ I. We typically assume unit exposure constraints for illustrative purposes, i.e. ci = 1 for all

i ∈ I. Under unit exposures |A−1
i |= 1, we overload notation to let A−1

i also refer to the (unique)

buyer recommended item i∈ I. We use i interchangeably with the singleton set {i}.

Buyer behavior is assumed to follow a discrete choice model (McFadden 1973).3 Buyer b∈B has

utility Ubi = ubi+ εbi for item i∈ I, where ubi is the expected utility that b has for i and εbi, drawn

independently and identically from a Gumbel distribution, is an unknown random component. We

take the expected value ubi as arbitrary and known to the platform—it may have been estimated

from prior interactions using a collaborative filter. The random component, εbi, is not known in

advance and can only be realized by the buyer after careful consideration of the item, a process

which may be time-consuming and cognitively demanding. We call vbi = eubi buyer b’s virtual value

for item i. Together the buyers, items and expected utilities constitute an instance over which

recommendations are made.

Outside options are modeled similarly: the known component of buyer b’s outside option ωb is

ubω. We assume all b ∈ B have ubω = uω. This is largely without loss of generality: when buyers

3 Choice models have been extensively used in the recommender systems literature to learn user-preferences from
their selections (Song et al. 2019, Moins et al. 2020, Song et al. 2022) and to predict user-choices when presented
with a set of recommendations (Fleder and Hosanagar 2007, Chen et al. 2019, Carroll et al. 2021).
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have outside options with different values, we can create normalized utilities u′
bi = ubi − ubω and

all our results remain true when phrased in terms of the normalized utilities. Most examples set

uω = 0 (vω = 1) for concreteness, though any constant will do.

Per choice model theory, buyer b∈B considering choice set S uncovers the previously unknown

random components of item utilities, potentially at some cost. Then the buyer (deterministically)

selects the option i∈ S that provides greatest utility. McFadden (1973) shows the resulting proba-

bility that option i will be selected from choice set S is P(b, i,S) = eubi/
∑

j∈S e
ubj = vbi/

∑
j∈S vbj.

4

Note that when vω ̸= 0 a buyer’s probability of selecting the outside option is positive and decreases

in the quality of their k-recommendation.

The welfare of (the seller of) item i is assumed only to be increasing in the expected number

of times i is selected, denoted Ei(A) =
∑

b∈A−1
i

P(b, i,Ab). Under unit exposures, this simplifies to

Ei(A) = P(i,A)≜ P(A−1
i , i,AA−1

i
). This is flexible enough to capture sellers having different profit

margins and expected profit increasing with the expected number of sales.

At the time of recommendation, a buyer’s expected utility from the choice set S is given by

ub(S) =E (maxi∈S(Ubi)) = log
(∑

i∈S e
ubi
)
(Williams 1977).5 The utility profile associated with rec-

ommendation profile A is u(A) = (ub(Ab))b∈B. Accordingly, vb(S) = eub(S) =
∑

i∈S vbi and we call

v(A) = (vb(Ab))b∈B the virtual value profile. We refer to
∑

b∈B ub(Ab) as the (total) buyer welfare.

Notice that each buyer has a fixed preference order over I ∪ {ω}, as determined by {ubi : ∀i ∈

I ∪{ω}}. However, sellers of items do not have a fixed preference order over buyers: the probability

of being selected depends both on the item’s utility and on how much competition the item faces

in a given choice set (specifically, the sum of virtual values of other options in the choice set).

2.1. Measuring The Quality of a Recommendation

Efficiency A natural requirement is that the recommendation profile is Pareto optimal (PO)

with respect to buyer utilities. Let [n] = {1, . . . , n}. A vector x ∈ Rn strictly dominates y ∈ Rn

when xi ≥ yi for all i∈ [n] and there exists j ∈ [n] where xj > yj. A recommendation profile A∈A

is Pareto optimal if there does not exist another recommendation profile A′ ∈ A such that u(A′)

strictly dominates u(A). Notice that u(A) is undominated exactly when v(A) is undominated.

Fairness A standard notion of fairness is envy-freeness, which we consider from the buyer per-

spective. Envy-freeness requires that each buyer prefers her choice set over that of any other.

Formally, recommendation profile A is envy-free when ub(Ab) ≥ ub(Ab′) (equivalently, vb(Ab) ≥

4 This expression for probability as a function of ubi, incidentally, is the softmax function that is widely used during
training of neural networks with discrete outcome variables (Goodfellow et al. 2016, p. 81).

5 Expected utility of choice sets thus calculated has been used to measure consumer welfare for policy evaluation.
Train (2009, Ch. 3.5) provides a textbook discussion; De Jong et al. (2007) surveys theory and real-world applications.
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vb(Ab′)) for all b, b′ ∈ B. Envy-freeness is often impossible with indivisible objects (consider allo-

cating a single valuable item to two agents). Thus it is commonly relaxed to envy-freeness up

to one item (EF1), which allows envy to exist but only to the extent that it can be eliminated

by removing a single item from the envied agent’s allocation. In our setting, each buyer must be

recommended exactly k items and simply removing an item from a buyer’s choice set is not an

option. We propose a relaxation of envy-freeness, called swap-envy-freeness, to accommodate this.

A recommendation profile is swap-envy-free up to 1 item (SEF1) when any pairwise envy between

buyers b ̸= b′ ∈ B can be eliminated by exchanging a single pair of items between them. Formally,

A is SEF1 if, for all b, b′ ∈ B where b envies b′, there exist a pair of items i ∈ Ab, j ∈ Ab′ so that

ub(Ab ∪ j \ i)≥ ub(Ab′ ∪ i \ j).

Ex-ante stability We combine the pairwise stability notion in Bando et al. (2016) with the

preference orders induced by the expected utilities under the choice model. A buyer-item pair

(b, i)∈B×I is called a blocking pair in recommendation profile A if both the buyer and the item’s

seller strictly benefit in the recommendation profile which results from i joining b and restoring

feasibility. Formally, for unit exposure constraints, (b, i) blocks when i ̸∈Ab and there exists a item

j ∈Ab so that both ubi > ubj and P(i,A)< P(b, i,Ab ∪ i \ j). A recommendation profile is stable in

the absence of a blocking pair.

Restoring the feasibility of a k-recommendation after i∈Ac replaces some item j in Ab requires

that there is an item available that can feasibly be recommended c, the buyer i left, since each

buyer must be recommended k items. Under unit exposures, recommending j to c is feasible since

we are guaranteed j ̸∈Ac. To handle general exposure constraints, where possibly j ∈Ac (meaning

that the ejected item can not be recommended to c) we assume there are dummy items available

for which every buyer has the lowest possible value which may be used to restore feasibility. When

there are no restrictions on the number of items recommended to each buyer simply including i in

Ab is feasible, there is no need to restore c’s choice set to size k.

A benefit of studying ex ante stability entirely in terms of buyers’ expected utilities ubi and

sellers’ expected sale P(i,A), as we do here, is that it is a property of a recommendation profile

within the control of the platform. It is also in line with the literature where stability is typically

defined using ex-ante preferences available to the central planner6 — this translates to using only

the known component in a random utility model.

One may be tempted, instead, to define (an ex-post) stability based on the item utilities (Ubi =

ubi+εbi). Immediately, a platform will be unable to tell if a fixed recommendation profile is stable or

not, since it depends on the realizations of the random εbi components. This is also impractical since

6 For example, doctors’ (hospitals’) preferences over hospitals (doctors) before they are matched (see Roth 1984a, pp.
996, 1008)
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it requires buyers to know their precise utilities for potentially thousands of items. Moreover, the

problem collapses to effectively assigning one item to each buyer — each buyer will deterministically

choose the item with highest (realized) utility and such (ex-post) stable matches trivially exist.

Finally, it is worth distinguishing between instability and choosing the outside option ω from a

choice set. When a buyer selects her outside option ω (prefers it to items she was recommended) the

platform loses a transaction. It is still possible that she is satisfied with the way she was matched,

i.e., no better match that sellers would agree to was available (the match was stable). Conversely,

she may, for the time being, select one of the recommended items in an unstable match. However,

over time the incentives present may lead users to multi-home or migrate to rival platforms. To

drive home this distinction, all examples remain valid when ignoring the outside option (set vω = 0).

We illustrate Pareto optimality, envy-freeness and stability with an example.

Example 1. Consider an instance with buyers {1,2}, four items {a, b, c, d}, outside option ω with

uω = 0 and k = 2. Table 1 shows the virtual values for an instance with identical buyers and two

good and two bad items. Suppose each item can only be recommended once.

Table 1 Buyers’ virtual values.

a b c d ω

Buyer 1 2 2 1 1 1
Buyer 2 2 2 1 1 1

The outside option appears in every buyer’s choice set, we omit explicitly including it except

where an omission could create confusion. The recommendation profile ({a, b},{c, d}) is Pareto

optimal even though it recommends both good items to the same buyer. It is also SEF1: buyer 2

envies buyer 1 but swapping b with c removes the envy. Furthermore, it is unstable with blocking

pair (2, b): 2 prefers b over both c and d, and b has a larger probability of being purchased by 2

in the choice set {b, c} than by 1 in the choice set {a, b}. Recommendation profile ({a, c},{b, d}) is

Pareto optimal, envy free and stable.

3. On The Existence of Stable Recommendations

We investigate the conditions under which stable recommendations exist. When the exposure

constraints do not prevent recommending each buyer her k most preferred items, top-k recommen-

dations are stable. Omitted proofs appear in the appendix.

Proposition 1. In any instance where the unconstrained top-k recommendation profile is fea-

sible, for example, when c⃗ = ∞ or when c⃗ = 1 and all buyers have disjoint sets of top-k items,

recommending each buyer their k most liked items is feasible, stable, welfare optimal and envy-free.
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Stability, here, follows from the fact that a buyer recommended her k highest value items will not

participate in a blocking pair. Recommender systems are often deployed on digital products where

exposure constraints are less likely to exists. For example, there may be no limit on the number of

times a streaming platform can stream a particular movie, or a book seller may sell an e-book. It

is reassuring to know that personalized top-k recommendation is stable in these settings. To the

best of our knowledge, this property of top-k recommendation has not been discussed before.

Unfortunately, once the exposure constraints make it impossible to recommend to every buyer

their most preferred k items, stable recommendations need no longer exist.

Theorem 1. Under unit exposures, there exist instances where no stable recommendation exists.

Proof. Consider the instance in Table 2 with buyers {1,2} and sellers {a, b, c, d}. We argue that

this instance with k= 2 does not permit a stable recommendation under unit exposure constraints.

Table 2 Buyers’ virtual values.

a b c d ω

Buyer 1 10 1 7 6 1
Buyer 2 10 8 4 5 1

Since A2 = S \A1, we need only check all possible A1. For A1 ∈ {{ac},{ad}}, (2, a) is a blocking

pair as buyer 2 prefers a over all their recommended sellers and would be willing to eject seller b

from their current choice set. For A1 ∈ {{ab},{bc},{bd}}, (2, b) blocks, since 2 will always be willing

to accept b (it is one of 2’s top-2 items), and b’s purchase probability, which is at most 1/8 when

it is recommended to buyer 1, increases. Finally, for A1 = {c, d}, (1, a) blocks since a is 1’s most

liked item and the purchase probability of a is higher when competing with c or d in 1’s choice set

than when competing with b in 2’s choice set. □

It is instructive to consider a few variations of the example in Table 2. First, setting vω = 0 does

not lead to stability. In other words, the presence of outside options is not the source of instability.

Instead, it comes from the externalities sellers have over other sellers they are recommended along-

side. Consider a variation where a buyer buys each item in their choice set independently with

probability increasing in the expected utility of the item (i.e., a buyer can buy multiple items).

Now seller preferences are independent of the choice set, buyer-preferences remain substitutable

(ub(S) =
∑

i∈S ubi), and existing work (say, Kelso and Crawford (1982)) imply stability even in the

presence of buyer and item side constraints — {{ac},{bd}} and {{cd},{ab}} are stable.

A closer look at the instance in Theorem 1 reveals two situations which facilitate blocking pairs.

First, whenever b is recommended to buyer 1, the massive discrepancy in the buyers’ values for
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item b created the potential for b to increase its purchase probability by deviating to 2. Second, the

allocations with b∈A2 lead to a large disparity in the bundle values, specifically, |v1(A1)−v2(A2)| ≥

4. When choice sets have very different values it leads to unequal levels of competition, and even

an item valued identically by the buyers may benefit from deviating to seller where it will face

less competition, as shown by the blocking pair (2, a) in allocation A1 = {a, c},A2 = {b, d}. We can

formalize this intuition that the incentive to participate in a blocking pair depends on the difference

in the buyers’ valuations of the same item and the difference in competition across choice sets in

terms of balance and impartiality, respectively (Huang et al. 2022).

Definition 1 (α-balance). The valuations of an item i is called αi-balanced if vbi ≤ αi · vci for

all b, c∈B. When each i∈ I is αi-balanced, the instance is called α-balanced, with α=maxiαi.

When buyers have identical values the instance is 1-balanced.

Definition 2 (β-impartiality). An allocation A is called β-impartial when β is the smallest

value such that vb(Ab)≤ β · vc(Ac) for all b, c∈B.7

For an arbitrary allocation A with blocking pair (b, i) ̸∈ A, let A′ denote an allocation with

A′
b =Ab∪ i\j for some j ∈Ab. For example, under unit constraints if i∈Ac then A′ can be identical

to A except that A′
b =Ab ∪ i \ j and A′

c =Ac ∪ j \ i, i.e., the allocation that results from A when

b deviates with i and the item ejected from Ab is recommended to c. We can upper bound the

benefit from participating in a blocking pair in terms of the balancedness of the instance and the

impartiality of A.

Theorem 2. Consider an α-balanced instance and β-impartial allocation A with i ∈Ac. For any

blocking pair (b, i) of A, the multiplicative gain of buyer b and seller i when deviating from A to A′

(as defined above) can be tightly upper bound as

P(i,A′)

P(i,A)
≤ αiβ ≤ αβ, and

vb(A
′
b)

vb(Ab)
<αiβ ≤ αβ.

Proof. We first bound the gain seller i can get from deviating. Observe that vbj ≤ vbi since b

ejected j in favor of i when deviating. Now

P(i,A′)

P(i,A)
=

vbi
vb(Ab)+ vbi − vbj

/ vci
vc(Ac)

=
vbi
vci

· vc(Ac)

vb(Ab)+ vbi − vbj

≤ vbi
vci

· vc(Ac)

vb(Ab)
≤ αiβ.

7 βb-impartiality can be defined with βb =maxc∈B{vc(Ac)/vb(Ab)} and will lead to slightly stronger bounds.
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We now bound the welfare increase of buyer b. Since (b, i) is a blocking pair the purchase probability

of i increases after deviation, so

P(i,A)< P(i,A′) ⇐⇒ vci
vc(Ac)

<
vbi

v(Ab)+ vbi − vbj
⇐⇒ vb(Ab)+ vbi − vbj <

vbi · vc(Ac)

vci
. (1)

We can now bound buyer b’s multiplicative increase in welfare as

vb(A
′
b)

vb(Ab)
=

vb(Ab)+ vbi − vbj
vb(Ab)

<
vbi
vci

· vc(Ac)

vb(Ab)
≤ αiβ,

where the second transition uses Equation (1).

We show in the Section EC.1 there exists instances where both the above bounds are tight. □

As an example, consider allocation A1 = {a, c,ω},A2 = {b, d,ω} in the instance of Theorem 1

which has αa = 1 and β = 18
14
, implying a maximum benefit of 18

14
≈ 1.29. Participating in the

blocking pair (2, a) increases seller a’s purchase probability by a factor of 10/16

10/18
≈ 1.11 when ejecting

b. Buyer 2’s welfare increases by a factor of 16
14

≈ 1.15.

When the unconstrained top-k recommendation profile is feasible (as in Proposition 1), top-k

recommendations are stable and maximize buyer welfare. Next, we show that maximizing buyer

welfare is closely related to stability.

4. Maximizing Buyer Welfare

A common platform objective is to maximize the total buyer welfare. Let A∗ be a recommendation

profile which maximizes total buyer welfare, i.e., under unit exposures A∗ is an optimal solution to

maximize
∑
b∈B

log

(∑
i∈I

eûbixbi + euω

)
s.t.

∑
b∈B

xbi = 1, for all i∈ I (unit exposures)∑
i

xbi = k, for all b∈B, and (k-recommendations)

xbi ∈ {0,1}, for all b∈B, i∈ I,

where xbi = 1 when i appears in b’s choice set. This is equivalent to maximizing the product of

buyer’s virtual values, or maximizing the Nash welfare with respect to virtual values vbi = eûbi . In

the fair division literature, maximizing Nash welfare (on item values) is known to be EF1 and PO

(Caragiannis et al. 2019).

Because buyer welfare is directly maximized, we may expect buyers to be less willing to deviate

from the platform’s recommendations. However, even for unit exposures, maximizing buyer welfare

is not guaranteed to find a stable recommendation in instances where one exists.
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Table 3 Maximizing buyers’ welfare need not result in a stable recommendation even when one exists.

a b c d ω

Buyer 1 10 6 3 1 1

Buyer 2 10 9.5 0.5 0.25 1

Example 2. Consider the instance with virtual values as shown in Table 3. The recommendation

that maximizes buyer welfare is A1 = {a, c},A2 = {b, d} (boxed), however, (2, a) is a blocking pair.

At the same time, the underlined recommendation A1 = {b, c},A2 = {a,d} is stable.

Despite these limitations, we show in the remainder of the section that maximizing buyer welfare

is closely tied to stability and leads to fair, efficient and stable recommendations in restricted

preference domains.

4.1. Recommendations without k-constraints

Proposition 1 suggests that exposure constraints are obstacles to stability: in the absence of expo-

sure constraints top-k recommendations are stable. We now investigate the k-recommendation

constraints and show that in their absence, when a buyer can be recommended an arbitrary number

of items, maximizing buyer welfare is stable and efficient.

Theorem 3. Maximizing buyer welfare without k-constraints is stable and Pareto optimal.

Let A∗ be the welfare maximizing allocation. We first show A∗ is stable. Suppose for contra-

diction i∈A∗
c and there is a blocking pair (b, i)∈B×I. Since buyer b does not benefit from being

recommended multiple copies of the same item, we conclude that i ̸∈A∗
b . Let A

′ be the recommen-

dation profile which coincides with A∗, except that A′
b =A∗

b ∪ {i} and A′
c =A∗

c \ {i}. In words, A′

is the allocation that results from A∗ after including i in b’s choice set. Note that, since there are

no constraints on the number of items recommended to each buyer, there is no need to displace a

seller from A∗
b to restore feasibility, A′ is feasible.

Since (b, i) blocks, both buyer and seller strictly benefit from i being recommended to b rather

than c. Buyers have non-zero virtual values for all sellers, so the buyer-side improvement is guar-

anteed. On the seller side, we conclude that

P(b, i,A′
b) =

vbi
vb(A∗

b)+ vbi
>

vci
vc(A∗

c)
= P(c, i,A∗

c) ⇔ 1−P(c, i,A∗
c)> 1−P(b, i,A′

b) (2)

where i∈A∗
c . Now

vb(A
′
b) · vc(A′

c)

vb(A∗
b) · vc(A∗

c)
=

(vb(A
∗
b)+ vbi) · (vc(A∗

c)− vci)

vb(A∗
b) · vc(A∗

c)

=
vbi

P(b, i,A′
b)

·
(

vci
P(c, i,A∗

c)
− vci

)/[(
vbi

P(b, i,A′
b)

− vbi

)
· vci
P(c, i,A∗

c)

]
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=
vbi

P(b, i,A′
b)

· vci − vciP(c, i,A∗
c)

P(c, i,A∗
c)

/[
vbi − vbiP(b, i,A′

b)

P(b, i,A′
b)

· vci
P(c, i,A∗

c)

]
=

1−P(c, i,A∗
c)

1−P(b, i,A′
b)

> 1,

where the final transition follows from Equation (2). This contradicts A∗ being the welfare maxi-

mizing allocation; we conclude that the welfare maximizing allocation is stable.

Pareto optimality follows directly from A∗ maximizing the product of utilities. □

This establishes that, although stability cannot be guaranteed in the presence of k-constraints,

maximizing buyer welfare is intrinsically linked to stability. Interestingly, the same holds when

integrality constraints are relaxed: then the buyer welfare maximization without the k-constraint is

the Eisenberg-Gale convex program (Eisenberg and Gale 1959) and stability of its optimal solution

(if integral) follows from the KKT conditions. The market clearing price, pi, of item i is exactly

the same as the purchase probability vbi
vb(A

∗
b
)
from those buyers b who are recommended i. Buyers

not recommended an item are willing to pay less, i.e., offer lower purchase probabilities. Similarly,

each buyer receives her most valued bundle. Therefore no matched buyer and seller would block.

A similar property holds when the optimal solution is fractional.

We next identify two restricted preference domains—buyers with identical or dichotomous

values—where maximizing buyer welfare is attractive even in the presence of k-constraints.

4.2. Identical Buyers

Suppose the buyers agree on a common evaluation ui of each item i∈ I. So, ui = ubi for all b∈ B.

We first consider maximizing expected buyer welfare under unit exposure constraints.

Theorem 4. For unit exposure constraints and identical preferences, A∗ is stable, PO and SEF1.

Proof. We first show A∗ is stable. Assume for contradiction it is not, then there exists a

blocking pair (b, i)∈B×I. Let c be the buyer currently recommended i. By definition, a blocking

pair implies i ̸∈ A∗
b and ∃j ∈ A∗

b so that vbj < vbi and P(i,A∗) < P(i,A′), where A′ is constructed

from A∗ by exchanging i and j, i.e. A′
b =A∗

b ∪ i \ j and A′
c =A∗

c \ i∪ j and A∗
d =A′

d ∀d ̸∈ {b, c}.

Since A∗ maximizes the product of virtual values vb(A
∗
b) ·vc(A∗

c)≥ vb(A
′
b) ·vc(A′

c). It follows that

vi − vj
vb(A′

b)
=

vb(A
∗
b)+ vi − vj − vb(A

∗
b)

vb(A′
b)

= 1− vb(A
∗
b)

vb(A′
b)

≤ 1− vc(A
′
c)

vc(A∗
c)

=
vc(A

∗
c)− (vc(A

∗
c)− vi + vj)

vc(A∗
c)

=
vi − vj
vc(A∗

c)
,

from which we get vb(A
′
b)≥ vc(A

∗
c). As a result, P(i,A∗) = vi/vc(A

∗
c)≥ vi/vb(A

′
b) = P(i,A′), contra-

dicting the fact that i strictly benefited from participating in the blocking pair. We conclude no

blocking pair exists and A∗ is stable.

Finally, we show that A∗ is SEF1 with respect to the virtual values, which implies SEF1 for the

true utilities by the monotonicity of the logarithm. Assume for contradiction that A∗ is not SEF1
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for virtual values and suppose that buyer b∈B envies c∈B. By definition, v(A∗
b)< v(A∗

c) and, for

every i∈A∗
c , j ∈A∗

b , v(A
∗
b \ j ∪ i)< v(A∗

c \ i∪ j).

There exists at least one pair of sellers (j, i)∈ (A∗
b ,A

∗
c) such that vj < vi. Otherwise, vj ≥ vi for all

j ∈A∗
b , i∈A∗

c . Since |A∗
b |= |A∗

c |, it follows that v(A∗
b)≥ v(A∗

c), which is not the case. Let A′ be the

recommendation that results from swapping i and j, in other words, A′
b =A∗

b ∪ i \ j,A′
c =A∗

c \ i∪ j

and A′
d =A∗

d for d∈B \ {b, c}.
Set δ= vi − vj > 0, so v(A′

b) = v(A∗
b)+ δ and v(A′

c) = v(A∗
c)− δ. Now

v(A′
b) · v(A′

c) = (v(A∗
b)+ δ)(v(A∗

c)− δ) = v(A∗
b) · v(A∗

c)+ δ(v(A∗
c)− (v(A∗

b)+ δ))> v(A∗
b) · v(A∗

c),

where the final transition follows from

v(A∗
c)− (v(A∗

b)+ δ) = (v(A′
c)+ δ)− (v(A∗

b)+ δ) = v(A′
c)− v(A′

b)+ δ > 0

since A∗ is not SEF1 by assumption and δ > 0. This contradicts the fact that A∗ maximized the

product of virtual values. We conclude that A∗ is SEF1.

Pareto optimality follows directly from A∗ maximizing the product of buyers’ virtual values. □

If it were possible to guarantee exactly equal values across all choice sets (i.e. find a perfectly

impartial recommendation profile with β = 1), then Theorem 2 would imply that the allocation

is stable, since α = 1 for agents with identical preferences. Perfectly balancing choice set virtual

values is too much to hope for, in fact, maximizing the product of buyer virtual values can lead

to arbitrarily large values of β even when impartial allocations exist under general valuations. The

previous result shows that, at least with identical preferences, it leads to choice sets with very

similar utilities and gets close enough to ensure stability. When items can be recommended more

than once, carefully constructed upper bounds may enforce less impartial recommendation profiles

where stability can no longer be guaranteed. The following example illustrates this.

Example 3. We study an instance with n= 2, k = 3 and six unique items and values and upper

bounds on the number of exposures as in Table 4. Without loss of generality, assume buyer 1

receives the most valuable item (the other case is symmetric). The resulting recommendation which

maximizes the product of buyers’ virtual values is indicated with checkmarks.

This welfare maximizing recommendation profile is not stable: consider transferring a to 2,

displacing b from 2’s current choice set. The only resulting recommendation is boxed (1 can not

be recommended a second copy of b). Buyer 2’s total virtual value increased from 20 to 22. Item

a’s probability of being selected also increased, from 12
26

to 12
22
. We conclude that (2, a) is a blocking

pair.

Notice that in the corresponding instance with seven items (two distinct items with value 10)

and unit constraints the product maximizing choice sets are valued more similarly, with virtual

values 22 and 24 (β = 24
22

≈ 1.1, rather than 20 and 26 (β = 26
20

= 1.3).
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Table 4 Buyers’ virtual values.

a b c d e f ω

Values 12 10 5 4 3 3 1
Exposure limit 1 2 1 1 1 1 –

Buyer 1 ✓ ✓ ✓ ✓
Buyer 2 ✓ ✓ ✓ ✓

Despite stability breaking down, A∗ remains PO (trivially) and SEF1. The argument that SEF1

holds is similar to the one presented in the proof of Theorem 4.

Theorem 5. A∗ is PO and SEF1 for buyers with identical preferences.

4.3. Dichotomous Values

We now consider the case where buyers have dichotomous preferences with either high or low value

for every item (and are indifferent among items of each type). Formally, assume vbi ∈ {ℓ,h} for all

b∈B and i∈ I, for some real-valued ℓ < h. Buyers need not agree on the evaluation of an item: it

may be of high value to some and of low value to others. Here, maximizing the total buyer welfare

(or maximizing Nash welfare with respect to the virtual values) again leads to stability.

Theorem 6. For buyers with dichotomous values, A∗ is stable, PO and SEF1 under unit exposure

constraints.

Proof of Theorem 6. Stability: Assume, for contradiction, A∗ is not stable. Then there exists

a blocking pair (b, i)∈B×I. Let c be the buyer to whom i is currently recommended.

Observe that b’s choice set contains at least one low-valued seller, otherwise she can not benefit

from participating in a blocking pair. Let j ∈A∗
b be such an item with vbj = ℓ. Construct A′ from

A∗ by exchanging i and j. So A′
b =A∗

b ∪ i \ j,A′
c =A∗

c ∪ j \ i and A′
d =A∗

d for all d∈B \ {b, c}.

We now study the possible values of (vbi, vci):

1. (ℓ, ℓ): Participating in a blocking pair requires displacing a buyer with strictly lower value,

which is not possible since vbi = ℓ. This contradicts (b, i) being a blocking pair.

2. (ℓ,h): As in the previous case, vbi = ℓ, which contradicts (b, i) being a blocking pair.

3. (h, ℓ): In this case i is assigned to c despite c having low and b having high value for it. It

follows that vb(A
′
b) = vb(A

∗
b)− ℓ+ h > vb(A

∗
b) and vc(A

′
c) = vc(A

∗
c)− ℓ+ vc(j) ≥ vc(A

∗
c). However,

this implies vb(A
′
b) · vc(A′

c)> vb(A
∗
b) · vc(A∗

c), contradicting the fact that A∗ maximizes the product

of virtual values.
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4. (h,h): Suppose that vcj = h. Now vb(A
′
b)> vb(A

∗
b) and vc(A

′
c) = vc(A

∗
c), contradicting that A∗

maximizes the product of virtual values. We conclude that vcj = ℓ, so b and c value the swapped

items identically. We can now argue as in Theorem 4 that

vb(A
∗
b) · vc(A∗

c)

vb(A′
b) · vc(A′

c)
≥ 1

1− vb(A
∗
b)

vb(A′
b)

≤ 1− vc(A
′
c)

vc(A∗
c)

(vb(A
∗
b)+ vbi − vbj)− vb(A

∗
b)

vb(A′
b)

≤ vc(A
∗
c)− (vc(A

∗
c)− vci + vcj)

vc(A∗
c)

h− ℓ

vb(A′
b)

≤ h− ℓ

vc(A∗
c)

vb(A
′
b)≥ vc(A

∗
c).

As a result, P(i,A∗) = vi/vc(A
∗
c)≥ vi/vb(A

′
b) = P(i,A′), contradicting the fact that i strictly bene-

fited from participating in the blocking pair.

We conclude there exists no blocking pair (b, i), and thus that A∗ is stable.

SEF1: Suppose, for contradiction, that A∗ is not SEF1 with respect to the virtual values. This

means there exists buyers b, c so that b envies c after every pairwise swap of items, i.e.

vb(A
∗
b)+ vbi − vbj < vb(A

∗
c)− vbi + vbj for all j ∈A∗

b , i∈A∗
c .

Consider arbitrary j ∈ A∗
b and i ∈ A∗

c so that vbj = ℓ and vbi = h (such items exist since b envies

c). If it were the case that vci = ℓ, then it would be possible to increase the product of utilities by

exchanging i and j (b is better off and c is no worse off). The maximimality of A∗ thus implies that

vci = h. We similarly conclude that vcj = ℓ. This means both buyers agree that every item j ∈A∗
b

with vbj = ℓ is a low value item, and similarly every i∈A∗
c with vbj = h is a high value item.

Let Hb = {k ∈ I : vbk = h} and Lb = {k ∈ I : vbk = ℓ}, and define Hc,Lc analogously. We’ve

established that Hb ∩A∗
c ⊆Hc ∩A∗

c and Lb ∩A∗
b ⊆Lc ∩A∗

b .

Construct A′ from A∗ by exchanging i and j. So A′
b =A∗

b ∪ i \ j,A′
c =A∗

c ∪ j \ i and A′
d =A∗

d for

all d∈B \ {b, c}. Let δ= h− ℓ.

Since A∗ is not SEF1, vb(A
′
b)< vb(A

′
c). Buyer c receives an ℓ item in exchange for an h one, so

vc(A
′
c) = vc(A

∗
c)− δ < vc(A

∗
c), similarly vb(A

′
b) = vb(A

∗
b)+ δ > vb(A

∗
b). Because c also has high value

for those items in A′
c that b has high value for,

vb(A
′
c) = vb(A

′
c ∩Hb)+ vb(A

′
c ∩Lb)

= h · |A′
c ∩Hb|+ ℓ · |A′

c ∩Lb|

= vc(A
′
c ∩Hb)+ ℓ · |A′

c ∩Lb|

≤ vc(A
′
c ∩Hb)+ vc(A

′
c ∩Lb) = vc(A

′
c).
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Putting it all together shows

vb(A
∗
b)< vb(A

′
b)< vb(A

′
c)≤ vc(A

′
c)< vc(A

∗
c). (3)

Finally,

vb(A
′
b) · vc(A′

c) = (vb(A
∗
b)+ δ)(vc(A

∗
c)− δ) = vb(A

∗
b) · vc(A∗

c)+ δ(vc(A
∗
c)− δ− vb(A

∗
b))

= vb(A
∗
b) · vc(A∗

c)+ δ(vc(A
′
c)− vb(A

∗
b))

> vb(A
∗
b) · vc(A∗

c),

where the final transition is from Equation (3). This contradicts the fact that A∗ maximized the

product of virtual values.

We conclude that A∗ is SEF1 in terms of virtual values. SEF1 in terms of utility follows from

the fact that a buyer’s utility is monotone in their virtual values.

Pareto optimality: This follows directly from A∗ being welfare maximizing. □

As was the case for identical buyers, not all these properties generalize to arbitrary exposure

constraints. Carefully chosen exposure constraints can force a situation where the choice sets of

two buyers have to overlap. Suppose, when this happens, buyers disagree on the value of the

commonly recommended items and agree on which of the other items have low and high values.

Now maximizing buyer welfare will result in allocating the items values highly by both to whoever

values the common items least, and the low value items to the other. This may create more envy

than what can be eliminated by a single exchange of items. The following example illustrates this.

Example 4. Consider an instance with n= 2, k = 15 and 20 unique items of three types. There

are ten unique items of type a, each with exposure limit two and v1a = 2, v2a = 1. There are five

unique items of type b, each with exposure limit one and v1b = 2, v2b = 2. There are five items of

type c, each with exposure limit one, which both buyers value at one. Table 5 summarizes the

instance.

The unique recommendation which maximizes the product of buyers’ virtual values (equivalently,

expected welfare) is boxed in Table 5: Buyer 1 is recommended all items of type a and c, and buyer

2 all items of types a and b. Buyer 1 has virtual value 26 for her own choice set and 31 for buyer

2’s set, so buyer 1 envies buyer 2. Since virtual values are at most two, no single exchange of items

can eliminate this envy and the recommendation is not SEF1 with respect to virtual values. By

monotonicity of the logarithm, the swap envy will remain when converting the virtual values into

expected utilities.
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Table 5 Buyers’ virtual values.

Item type a b c ω
# of items 10 5 5 –
Exposure limit 2 1 1 –

Buyer 1 2 2 1 1

Buyer 2 1 2 1 1

Stability and Pareto optimality, however, can still be guaranteed. The proof that stability holds is

largely similar to the unit exposure case, where the existence of a blocking pair contradicted A∗

being welfare maximizing. The main wrinkle is that the seller ejected from the deviating buyer’s

choice set may already be recommended to the buyer who suffered from the deviation, so care must

be taken when constructing the alternative recommendation A′.

Theorem 7. A∗ is stable and PO for buyers with dichotomous values.

5. Alternative Algorithms for Constrained Recommendation

Though it is not possible to guarantee stability for general instances, one may attempt to find a sta-

ble recommendation on those instances that permit it. In Section EC.6 we present a polynomially-

sized integer program which finds stable recommendations when they exist and otherwise minimizes

the largest incentive any seller has to deviate. Unfortunately, this approach does not appear to

scale to realistic instance sizes.

In this section we propose alternative algorithms accommodating constraints on the number of

exposures per product as benchmark against welfare maximizing recommendations. We describe the

algorithms under unit constraints, but all are simple to modify to arbitrary exposure constraints.

5.1. Round Robin Recommendations

The round robin algorithm fixes a permutation of buyers, then cycles through the buyers k times.

At each step, the active buyer is assigned her highest value item from the remaining items. The

only modification required under general exposure constraints is that a buyer may not be assigned

the same item twice.

In the instance of Example 1, round robin results in each buyer being recommended one high

value item and one low value item. An advantage of round robin is that common high value items

are shared among buyers. This increases the probability of high value items being selected by

reducing the relative competition they face. This, in turn, reduces their incentive to deviate and

promotes stability. We show that round robin, which is known to be EF1 in traditional indivisible

goods settings, is also SEF1.

Theorem 8. Round robin is SEF1.
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Proof. Let A be the round robin allocation. Suppose for contradiction A is not SEF1. Then

there exists buyers b, c ∈ B so that b envies c after any one exchange of items between their

allocations. Assume without loss of generality that b was after c in the permutation of buyers,

otherwise b would not envy c. We ignore other buyers, since their bundles do not affect b’s envy

towards c.

Label Ab = {b1, b2, . . . , bk} and Ac = {c1, c2, . . . , ck}, where items are indexed in the order they

are assigned. This implies, vb(bi)> vb(bj) and similarly vc(ci)> vc(cj) whenever j > i.

By the nature of round robin, when b was allocated bi, all cj, j > i were still unassigned. This

implies vb(bi)≥ vb(ci+1) for all i∈ [k−1]. By assumption, b envies c, so
∑

i∈[k] vb(bi)<
∑

i∈[k] vb(ci).

Since
∑

i∈[k−1] vb(bi)≥
∑

i∈[k−1] vb(ci+1), it follows that vb(c1)> vb(bk).

Create a new allocation A′ by swapping bk and c1 and leaving the other buyers unchanged, so

A′
b =Ab \ bk ∪ c1, A

′
c =Ac ∪ bk \ c1 and A′

d =Ad for all d∈B \ {b, c}. Now

vb(A
′
b) = vb(c1)+

∑
i∈[k−1]

vb(bi)> vb(bk)+
∑

i∈[k−1]

vb(ci+1) = vb(A
′
c),

contradicting that b has swap envy towards c. We conclude that round robin is SEF1. □

Because round robin leads to approximately equal welfare across buyers, choice sets are similarly

competitive (or impartial, in the parlance of Theorem 2). This should reduce sellers’ incentive to

deviate, making stability more likely. Despite being SEF1, round robin need not be Pareto optimal

or stable (see Section EC.7).

5.2. Online Greedy Top-k

This strategy iterates over buyers in a random order and recommends each buyer her top-k (remain-

ing) items. This mimics a natural practice: buyers arrive on a website one at a time, and the

platform recommends the set of items that would provide the buyer the highest utility without

considering future arrivals. Because greedy top-k considers only a single buyer at a time, its recom-

mendations are based on much less information than those of the two preceding algorithms, both

of which consider all buyers and their preferences when constructing a recommendation profile.

Despite the popularity of this approach, it is particularly susceptible to instability, especially

when buyers agree that some items are superior to others. Consider the instance in Example 1. The

greedy strategy will assign both high value items to first buyer, leaving the other buyer with both

low value items. Sellers of both the high value items would get a higher purchase probability by

displacing one of the two low value items in the second choice set. The second buyer will accept such

displacement because it increases her welfare. As a result, the greedy recommendation is unstable.

Identical values are not required for instability: any overlap in buyers’ top-k items suffices.
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Greedy top-k also fails to satisfy basic fairness and efficiency properties. Consider an instance

with two buyers and k ≥ 3 and assume that buyer 1 has value 1 for all items. Without loss of

generality, suppose that items [k] are included in buyer 1’s choice set. Set buyer 2’s values as

follows: they value items [k] highly and the remainder at some low value. Buyer 1 is considered

first, without regard for other buyers, after which buyer 2 is recommended items {k+1, . . . ,2k},

all of which they have low value for. This recommendation is neither Pareto optimal nor SEF1.

Proposition 2. Greedy top-k recommendations need not be stable, SEF1 or Pareto optimal.

5.3. Online Variants of Batch Algorithms

Greedy top-k is better suited to certain online settings since it only requires a single buyer’s

preferences to make recommendations, while the preceding algorithms are more suited to batch

recommendations. We outline a simple framework for converting a batch recommendation algorithm

to an online algorithm by fixing past recommendations and simulating future arrivals using the

empirical distributions. The goal is to permit recommending to buyers one at a time as they arrive,

while using some population level information to overcome the drawbacks of greedy top-k.

Let bt denote the buyer arriving in time step t as well as her item preferences. By now, t− 1

buyers have received recommendations, let Bt−1 = {bs : s≤ t− 1} be those buyers and A1, . . . ,At−1

their k-recommendations. Construct an instance It = (B̂n
t , c

t), where B̂n
t consists of bt together

with with n− t− 1 buyers drawn uniformly at random with replacement from Bt, and remaining

capacities cti = ci −
∑

j∈[t−1] 1[i ∈ Aj]. Notice ct is exactly the capacities remaining after the first

t−1 recommendations (the past is immutable), and B̂n
t assumes future arrivals will have the same

distribution as historical ones. If Ât, . . . , Ân are the batch recommendations on It, recommend Ât

to buyer bt.

For illustration, we evaluate this online variant of round robin. Of course, the online variant of

an algorithm provides no more guarantees than the batch version.

6. Measuring Instability in Real World Datasets

Theorem 1 shows that there are instances where stability is impossible, but we may hope that such

instances are rare. Moreover, even in the absence of stability it is possible that very few sellers

participate in blocking pairs, or that they have so little to gain from deviating from the match

that it is practically irrelevant. In this section we investigate whether common recommendation

strategies lead to stable matches in real-world datasets and, if not, whether sellers have a significant

incentive to deviate.
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6.1. Datasets

We use three datasets for our experiments: two with customers’ ratings on products from Amazon

(in the Automotive and Musical Instruments categories) and one with renters’ ratings on clothing

from Rent-the-runway (Table 6). These are classic physical goods markets with a natural capacity

constraint dictated by inventory levels. Amazon is a platform that matches buyers to third-party

sellers. Rent-the-runway is becoming a platform where multiple suppliers maintain their portfolio

of garments (Chang 2018). As such, suppliers’ incentive to participate in any recommender system

used by these platforms become salient.

Table 6 Summary of datasets used in the experiments.

Rating summary

Dataset # users # items # ratings Min Median Avg Max

Amazon Automotive 193651 79437 1711519 1 5 4.46 5
Amazon Musical Instrument 27530 10620 231392 1 5 4.47 5
Rent the Runway 105508 5850 192462 2 10 9.09 10

Note: All data are available at https://cseweb.ucsd.edu/∼jmcauley/datasets.html. We use the full Rent-the-runway

dataset. For Amazon, we use the small, dense subsets with buyers and items that occur at least five times.

6.2. Experiments

We simulate a platform’s recommendations to a subset of buyers. We take that the platform has

estimated rating of each item for each buyer from her past ratings using a learning algorithm

(e.g., a collaborative filter).8 The platform recommends k= 5 items to each buyer using one of the

strategies outlined in Section 4 and Section 5. For simplicity, we assume that the platform has only

one copy of each item and does not recommend any item to more than one buyer to avoid the risk

of stockout.

For the learning algorithm, one can use a content based filter (leveraging both the user and item

attributes) or a collaborative filter (using only ratings). Content based filters are less susceptible

to cold-start problems, but require rich metadata that may limit their applicability. Collaborative

filters require more observations to perform well, but can learn preference on aspects of items

that are hard to attributize (e.g., style). It has been shown that collaborative filters with minimal

observations per item can perform better than content based filters using metadata (Pilászy and

Tikk 2009). We train a matrix factorization based collaborative filters on entire datasets (Zhou

8 Ratings measure how satisfied a customer has been with a product and are taken to represent a customer’s utility
from a product for designing recommender systems (Adomavicius and Tuzhilin 2005).

https://cseweb.ucsd.edu/~jmcauley/datasets.html
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et al. 2008).9 Then we randomly select B ∈ {50,100,200} buyers and k×B items to form a pool

of buyers and items to be matched. The collaborative filter’s predicted ratings for each buyer-item

pair is used as the buyer’s expected utility for the item. We take uω to be 0.10 We track five metrics

for each recommendation strategy:

1. Welfare: the average buyer welfare from their recommended choice sets. All else being equal,

a platform would like to provide its buyers higher welfare.

2. Move: the percentage of sellers who participate in a blocking pair, i.e. can and prefer to form

different matches with the buyers. This measures how widespread the incentive to deviate is.

3. Gain: the average percentage improvement in purchase probability of such sellers if they

deviated to maximize their purchase probability. This measures how strong the incentive is.

4. Envy: the percentage of buyers who envy another. Fewer buyers with envy signals that the

recommendations are more fair.

5. Swap Envy: the percentage of buyers who envy another even after their most preferred

exchange of items. Low swap envy implies that whatever envy exists is limited and can be removed

by a single swap.

We repeat experiments with 16 random instances from each dataset and report average metrics

in Table 7.

There is widespread and substantial incentive to deviate from the recommendations of the greedy

top-k algorithm. Nearly all sellers participate in blocking pairs, and they often stand to improve

their expected sales by more than 100% by deviating from the system’s recommendations.11 While

most of the sellers would still like to deviate under the other strategies, their potential gain from

doing so is substantially lower. Maximizing total buyer welfare appears to be the most stable:

roughly half the sellers have incentive to deviate but they stand to gain only about 10-12%. Round

robin performs slightly worse, but the simplicity of the algorithm may make it an attractive option

when it is not computationally feasible to maximize utility on large datasets. The online variant of

round robin compares poorly to the two batch strategies, but is comfortably the best of the online

algorithms with the average gain from deviating roughly half that of greedy top-k. Note that it

achieves this with the same incremental access to data as the greedy top-k.

9 We do not set aside a test set for the main experiment since out-of-sample prediction is not the goal. However, a
separate evaluation using 20% data for testing shows a RMSE of 1.1 on a 10 point scale for Rent-the-runway and
0.64 – 0.7 on a 5 point scale on the two Amazon datasets. These suggest a reasonably accurate recommender system.

10 So vω = 1. The results were quantitatively similar and qualitatively identical without an outside option, i.e. vω = 0.
Setting uω to average rating of the items in the dataset also leads to qualitatively similar results.

11 Some caution is warranted in interpreting these gains. We report the average incentive an individual seller has to
deviate from the current matching. This is not necessarily the gains the sellers will realize if all of them deviate to
maximize their expected sales. We expect that gains will be lower under under this setting, since particularly worse
off buyers will attract multiple new sellers, thereby leading to increased competition.
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Table 7 Welfare, instability and envy in 5-recommendations under unit exposure constraints.

Number of users/items
50/250 200/1000

Automotive Welfare+ Move - Gain- Envy- Swap Envy- Welfare+ Move- Gain- Envy- Swap Envy-

Max Welfare 6.39 50.1% 8.4% 48.5% 0.4% 6.47 56.6% 8.9% 44.2% 0.4%
(0.01) (1.15%) (0.40%) (2.67%) (0.26%) (0.01) (0.67%) (0.31%) (1.75%) (0.21%)

Round-robin 6.36 64.8% 11.5% 40.9% 0.0% 6.44 70.8% 11.7% 38.0% 0.0%
(0.01) (1.14%) (0.24%) (1.69%) (0.00%) (0.01) (0.39%) (0.13%) (0.65%) (0.00%)

Greedy top-5 6.27 96.8% 113.6% 76.0% 61.1% 6.36 99.2% 145.4% 71.7% 58.8%
(0.01) (0.23%) (5.40%) (1.36%) (1.36%) (0.01) (0.05%) (4.49%) (0.75%) (0.99%)

Online RR 6.27 92.8% 50.9% 64.4% 1.9% 6.36 97.7% 70.4% 51.8% 1.8%
(0.01) (0.53%) (3.47%) (1.90%) (0.37%) (0.01) (0.26%) (4.12%) (0.66%) (0.17%)

Musical Instr.

Max Welfare 6.37 48.7% 7.8% 46.8% 0.1% 6.43 55.2% 8.4% 50.1% 0.8%
(0.01) (1.64%) (0.37%) (2.33%) (0.12%) (0.01) (0.72%) (0.27%) (1.81%) (0.18%)

Round-robin 6.34 64.6% 10.3% 38.7% 0.0% 6.40 70.5% 10.8% 37.4% 0.0%
(0.01) (1.00%) (0.26%) (1.79%) (0.00%) (0.01) (0.34%) (0.14%) (0.61%) (0.00%)

Greedy top-5 6.26 97.0% 96.0% 75.4% 60.0% 6.33 99.1% 128.1% 73.8% 59.3%
(0.01) (0.18%) (5.48%) (1.45%) (2.33%) (0.01) (0.07%) (5.31%) (0.64%) (1.01%)

Online RR 6.26 93.6% 44.9% 63.2% 2.1% 6.32 97.7% 65.3% 50.2% 1.4%
(0.01) (0.49%) (1.88%) (2.18%) (0.37%) (0.00) (0.20%) (3.33%) (0.97%) (0.12%)

Rent-the-runway

Max Welfare 11.03 55.6% 10.9% 50.7% 0.2% 11.11 63.9% 13.5% 52.7% 0.3%
(0.01) (2.80%) (0.98%) (3.37%) (0.17%) (0.00) (1.81%) (0.92%) (1.31%) (0.14%)

Round-robin 10.99 70.8% 14.0% 55.6% 0.0% 11.07 73.3% 14.4% 51.3% 0.0%
(0.01) (0.95%) (0.23%) (2.22%) (0.00%) (0.00) (0.47%) (0.13%) (1.25%) (0.00%)

Greedy top-5 10.88 97.6% 143.0% 87.9% 79.4% 10.96 99.2% 169.0% 87.9% 77.1%
(0.01) (0.12%) (4.77%) (1.04%) (1.48%) (0.00) (0.06%) (4.72%) (0.36%) (0.57%)

Online RR 10.91 94.3% 52.8% 68.7% 1.1% 10.99 98.1% 84.5% 59.1% 1.6%
(0.01) (0.50%) (2.75%) (2.21%) (0.30%) (0.00) (0.10%) (1.81%) (1.49%) (0.12%)

Note: 1) Welfare: The average welfare of the buyers from their choice sets. 2) Move: The % of all the sellers who can and
would like to move to a different buyer. 3) Gain: The % they would gain in probability of purchase by doing so (over a
baseline average of ≈ 0.2). 4) Envy: The % of buyers who envy the allocation of another. 5) Swap Envy: The % of buyers who
envy another even after their most preferred swap. Reported numbers are averages over 16 random draws. The numbers in
parenthesis are standard errors. The experiments with 100 users and 500 items produce qualitatively similar results and are
omitted. -: smaller the better; +: larger the better.

Regarding envy, we see that 70-90% of the buyers have envy under the greedy strategy. Moreover,

the fraction of the envious buyers does not reduce significantly even when they are allowed to swap

an item with the envied buyers. Round robin (both versions) and max welfare do much better.

Though roughly 50% of buyers still have envy, the recommendations are nearly SEF1: whatever

envy exists can be eliminated by exchanging one pair of items between choice sets.

Unsurprisingly, maximizing total welfare leads to the highest buyer utility. Round robin yields

utilities within 1% of optimal. The online algorithms, which only see a single buyer at a time,

perform 1-2% worse. Greedy top-k’s myopic decisions are punished by the decreasing marginal

utility to adding items to the choice set.

In all, maximizing buyer welfare stands out as with the highest welfare, smallest incentives to

deviate from the recommendations and near-zero swap envy.
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7. Discussion

Personalized recommendations play an important role in matching buyers to sellers in large mar-

ketplaces. We initiate a study of the stability of matches formed by such recommendations under

a discrete choice model. Though stable matches may not always be possible, we find that maxi-

mizing buyer welfare is not only provably stable in restricted preference domains but also leads to

relatively low incentives to deviate in real data sets. In this section, we discuss issues not raised

elsewhere and avenues for future work.

Many offline matching markets have unraveled in the absence of stability (school-choice, medical

labor market, etc.). Due to easier search and discovery, online markets are even more susceptible.

Online markets may unravel differently than offline markets. Instead of buyers reaching out to

individual sellers, we may see disgruntled sellers multi-homing on various platforms and unsatisfied

buyers browsing other platforms before purchasing. These still drive transactions off-platform,

which is what platform owners seek to prevent.

Our findings suggest that maximizing buyer welfare is reasonable when the objective is a stable

marketplace. But stability of one marketplace may not be enough in an ecosystem where multiple

marketplaces/platforms compete. There is a growing interest in fairness towards certain groups at

a marketplace (e.g., exposure for minority owned or small businesses). An explicit consideration of

buyer, seller, and platform objectives (emphasized in recent recommender systems literature) may

be necessary to make a platform successful in this environment.

We have not considered strategy-proof mechanisms in this study. Typically, recommender sys-

tems estimate preferences from buyers’ past behavior. These values are somewhat resistant to

manipulation, since manipulation would require buyers modifying their browsing, search or pur-

chases for some time. In an alternative setting where agents directly report preferences primarily

for matching, questions of strategyproofness and incentive compatibility become salient.

Several interesting questions remain open: Are there scalable methods that find stable recom-

mendations when they exist and otherwise minimize the incentive to deviate from the recommen-

dations? The integer program in Section EC.6 is a step in this direction but scalability remains

an issue. We ignored issues of competition but it may be important to understand, for example,

how a platform’s recommendation algorithm should change when a rival actively attempts to lure

away users. Finally, is there a complete characterization of exactly which instances or preference

structures permit stable recommendations? Do real-world instances satisfy these conditions?

The stability of personalized recommendations is a topic of enormous practical relevance and

theoretical significance. We hope this study leads to future research on this important topic.
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Proofs Omitted From The Main Body

EC.1. Incentive to Deviate

Example EC.1. Consider the instance in Table EC.1 with exposure constraints equal to 1. Note

the the instance is 2-balanced. The recommendation A1 = {c, d} is β-impartial, with β = 2
2−ε

,

and (1, a) is a blocking pair, The purchase probability of item a is 1/2 in A1. After deviating

Table EC.1 Buyers’ virtual values.

a b c d

Buyer 1 2 1 2− ε 0
Buyer 2 1 1 1 0

to A′
1 = {a,d}, the purchase probability of a is 1. The difference between seller a’s multiplicative

improvement and the bound of αβ in Theorem 2 is

αβ− P (a,A′)

P (a,A)
= 2 · 2

2− ε
− 1

1/2
=

4− 4+2ε

2− ε
=

2ε

2− ε
→ 0 as ε→ 0.

By considering the deviation to A′′
1 = {a, c}, we similarly find that the upper bound on buyer

improvement is tight. Specifically,

αβ− v1(A
′′)

v1(A)
= 2 · 2

2− ε
− 4− ε

2− ε
=

ε

2− ε
→ 0 as ε→ 0.

EC.2. Other restricted preference domains

One may hope to escape this non-existence by placing restrictions on buyer preferences. For two

common forms of structured preferences this is unsuccessful. First, suppose each buyer b is associ-

ated with a characteristic vector βb, each item i with similar vector γi, and ubi = ⟨βb, γi⟩. A stable

recommendation still need not exist since the instance of Theorem 1 can be factorized. Second,

when buyers have identical preference orders over the items (but potentially different values) a

stable recommendation always exists under unit exposures for instances with n= 2, k= 2, but not

in general (see Section EC.5.1).

EC.3. Identical Buyers

Theorem 5. A∗ is PO and SEF1 for buyers with identical preferences.

Proof. Pareto optimality again follows from maximizing expected buyer welfare.

Suppose for contradiction that A∗ is not SEF1. Then there exists buyers b, c, so that b envies

c even any feasible exchange of items between A∗
b and A∗

c . Let X = A∗
b ∩ A∗

c denote the items
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recommended to both b and c. An exchange of items i∈X and j ∈A∗
c can only be feasible if j = i,

otherwise c ends up being recommended i twice. Such an exchange does not change buyer bundles

or utility, so we may safely ignore them.

Let S = {(i, j) : i ∈ A∗
b \ X,j ∈ A∗

c \ X,vi < vj} denote the set of feasible exchanges that are

(strictly) improving for b. Suppose S = ∅. If |X|= k, then b and c are recommended identical choice

sets, and there is no envy. We may conclude that |X| < k. Since k = |A∗
b | = |A∗

c |, it follows that

|A∗
b \X| = |A∗

c \X| > 0. Let i− = argmini{vi : i ∈ A∗
b \X} and j+ = argmaxj{vj : j ∈ A∗

c \X}. If

S = ∅, then in particular (i−, j+) ̸∈ S and, since this is a feasible exchange, it follows that vi− > vj+ .

Then

v(A∗
b)≥ v(X)+ vi− · |A∗

b \X|> v(X)+ vj+ · |A∗
b \X|

= v(X)+ vj+ · |A∗
c \X|= v(A∗

c),

contradicting that b envies c. It follows that S ̸= ∅.

Select arbitrary (i, j) ∈ S. By assumption, v(A∗
b) + vj − vi < v(A∗

c) + vi − vj. Construct A′ by

exchanging i and j and keeping the rest of the recommendation unchanged, so A′
b =A∗

b ∪{j} \ {i}

and A′
c =A∗

c ∪{i} \ {j} A′
d =A∗

d for all d∈B \ {b, c}.

Set δ= vj − vi > 0, so v(A′
b) = v(A∗

b)+ δ and v(A′
c) = v(A∗

c)− δ. Now

v(A′
b) · v(A′

c) = (v(A∗
b)+ δ)(v(A∗

c)− δ) = v(A∗
b) · v(A∗

c)+ δ(v(A∗
c)− (v(A∗

b)+ δ))≥ v(A∗
b) · v(A∗

c),

where the final transition follows from

v(A∗
c)− (v(A∗

b)+ δ)≥ v(A′
c)− v(A′

b)> 0

since A∗ is not SEF1 by assumption. This contradicts the fact that A∗ maximized the product of

virtual values. We conclude that A∗ is SEF1. □

EC.4. Dichotomous buyers

Theorem 7. A∗ is stable and PO for buyers with dichotomous values.

Proof.

As before, set ℓ = ea and h = ea
′
. We show that maximizing the product of buyer virtual val-

ues, which is equivalent to maximizing buyer welfare, is stable (Pareto optimality follows from

maximizing buyer welfare).

Assume, for contradition, A∗ is not stable. Then there exists a blocking pair (b, i)∈B×I. Let c

be the buyer to whom (the relevant copy of) i is currently recommended.

Since b is willing to participate in the blocking pair, vbi = h and her choice set contains at least

one low-valued item. Let j ∈A∗
b be such an item with vbj = ℓ. Construct A′ from A∗ by transferring
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i from c to b’s choice sets, and completing c’s choice set by recommending some item j′ that is below

capacity after the transfer. Note that j′ must exist, by the definition of a blocking pair, and j′ need

not be j, in particular, when j ∈A∗
c using j′ = j is infeasible. Now A′

b =A∗
b + i− j,A′

c =A∗
c + j′ − i

and A′
d =A∗

d for all d∈B \ {b, c}.
We now consider the possible values of (vbi, vcj′):

1. (ℓ, ·): Now vb(A
′
b)≤ vb(A

∗
b). This contradicts (b, i) being a blocking pair, since b must strictly

gain from participating in a blocking pair and can not do so if vbi = ℓ= vbj.

2. (h,h): Now vb(A
′
b) > vb(A

∗
b) since vbi > vbj and vc(A

′
c) ≥ vc(A

∗
c) since vcj′ = h ≥ vci. This

contradicts that A∗ maximizes the product of virtual values.

3. (h, ℓ): Now vb(A
′
b) = vb(A

∗
b)− ℓ+ h > vb(A

∗
b). We will handle the cases of vci = ℓ and vci = h

seperately.

First, suppose vci = ℓ. Then vc(A
′
c) = vc(A

∗
c), implying vc(A

′
c) · vb(A′

b)> vc(A
∗
c) · vb(A∗

b), contra-

dicting A∗ maximizing the product of virtual values.

Suppose instead vci = h. Now vc(A
′
c) = vc(A

∗
c)+ ℓ−h< vc(A

∗
c).

We know that vb(A
∗
b) < vb(A

∗
b) + h − ℓ = vb(A

′
b) < vc(A

∗
c), because both b and i benefit from

participating in the blocing pair and vbi = h= vci by assumption. As a result, vc(A
∗
c)− vb(A

∗
b)>

h+ℓ. In contrast, vc(A
∗
c)−vc(A

′
c) = h+ℓ. It follows that vb(A

∗
b)< vc(A

′
c), and the resulting product

of virtual values of

vb(A
′
b) · vc(A′

c) = (vb(A
∗
b)+h− ℓ)(vc(A

∗
c)−h+ ℓ)

= vb(A
∗
b) · vc(A∗

c)+ (h− ℓ)[vc(A
∗
c)−h+ ℓ− vb(A

∗
b)]

= vb(A
∗
b) · vc(A∗

c)+ (h− ℓ)[vc(A
′
c)− vb(A

∗
b)]

> vb(A
∗
b) · vc(A∗

c)

contradicts the fact that A∗ was welfare maximizing.

We conclude there exists no blocking pair (b, i). Hence, A∗ is stable. □

EC.5. Other Preference Domains

EC.5.1. Latent factor models

First, we show that the instance of Theorem 1 (Table 2) can be factorised, which implies that

stability can not be guaranteed when buyer values come from a latent factor model.

Example EC.2. A stable matching need not exist when values come from a latent factor

model. Let n = 2, k = 2, f = 2. Consider β1 = (0.6,1.4), β2 = (1.7,0.3) and σa = (1.1,1.2), σb =

(1.3,−0.5), σc = (0.6,1.2), σd = (0.7,1). The resulting value and utility matrices are shown below.

It is straightforward to verify that this instance allows the same blocking pairs identified in

Theorem 1.
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Table EC.2 Utility matrix (left) and valuation matrix (right).

a b c d

1 2.34 0.08 2.04 1.82
2 2.23 2.06 1.38 1.49

a b c d

1 10.39 1.08 7.69 6.17
2 9.39 7.84 3.97 4.44

EC.5.2. Identical preference orders

Next, we consider the case where buyers have identical preference orders over the items, but not

identical values.

The following example with two buyers, six items, unit exposure constraints and k = 3 shows

that stability can not be guaranteed.

Table EC.3 Buyers’ virtual values: identical preference orders do not guarantee stable recommendations

existing.

a b c d e f

1 1 4 5 6 7 10
2 0.5 1.7 4.5 5 9 10

However, stability can be guaranteed in the restricted case of unit exposure constraints with

n= 2= k, m= 4.

Proposition EC.1. Consider two buyers with identical preference orders and four items

{a, b, c, d} labeled in decreasing order of their virtual values. When k= 2 under unit exposure con-

straints, at least one of {{a,d},{b, c}} and {{b, c},{a,d}} is stable.

Proof.Let A1 = {{a,d},{b, c}} and A2 = {{b, c},{a,d}}.
First, we show that in either A1 or A2 seller a is unwilling to participate in a blocking pair.

Suppose this is not the case, and a participates in a blocking pair in both A1 and A2. Then, from

A1, we conclude v1a
v1a+v1d

< v2a
v2a+v2c

. Similarly, from A2,
v2a

v2a+v2d
< v1a

v1a+v1c
. Together, it follows that

v2a
v2a + v2d

<
v1a

v1a + v1c
<

v1a
v1a + v1d

<
v2a

v2a + v2c
<

v2a
v2a + v2d

,

a contradiction. We conclude a is unwilling to participate in a blocking pair in at least one of

A1,A2; relabel the buyers so that this happens in A1.

Consider A1 = {{a,d},{b, c}}. By construction, a does not participate in a blocking pair. Item b

does not participate in a blocking pair, since it is currently selected with probability greater than

0.5 but this drops to less than 0.5 after deviating. Item d does not participate in a blocking pair,

since it is the least liked item and can not displace another item from a choice set. Assume that c

participates in a blocking pair, otherwise we have found a stable recommendation. It follows that

v2c
v2b + v2c

<
v1c

v1a + v1c
. (EC.1)
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Now consider A2 = {{b, c},{a,d}}. By the same reasoning as before, b and d do not participate

in blocking pairs. We investigate whether a or c can participate ina blocking pair.

1. Suppose a participates in a blocking pair. Then v2a
v2a+v2d

< v1a
v1a+v1c

. Equivalently,

v2d
v2a + v2d

>
v1c

v1a + v1c
>(By Eq. EC.1) v2c

v2b + v2c
>

v2d
v2b + v2d

>
v2c

v2a + v2c
,

a contradiction.

2. Suppose c participates in a blocking pair. Then v1c
v1c+v1b

< v2c
v2a+v2c

. It follows that

v1c
v1c + v1b

<
v2c

v2a + v2c
<

v2c
v2b + v2c

<(By Eq. EC.1) v1c
v1a + v1c

<
v1c

v1c + v1b
,

a contradiction.

We conclude either A1 is stable or, when c participates in a blocking pair in A1, A2 is stable.

□

EC.6. Finding Stable Recommendations, When They Exist

Example 1 shows that stability can not be guaranteed for general preferences. However, there may

still be many instances that permit stable recommendations. We construct an integer program to

find a stable match if it exists and, if not, returns recommendations in which the sellers’ benefit

from participating in a blocking pair is as small as possible.

There are some obstacles to overcome. Stability depends on items’ purchase probabilities, which

are inherently nonlinear. One option is to assign choice sets to buyers and precompute all the

resulting purchase probabilities, however, this leads to an exponentially sized program. We present

below a formulation with O(|B|2 · |I|2) =O(|B|4 · k2) variables and as many constraints.

Define binary variable xbi which takes value 1 exactly when i∈ I is recommended to b∈B. The

following constraints ensures k sellers are recommended to each buyer and that the recommendation

satisfies capacity constraints ∑
b∈B

xbi = ci,∀i∈ I, (EC.2)∑
i∈I

xbi = k,∀b∈B. (EC.3)

Define continuous variable g≥ 0 to capture the maximum multiplicative improvement any seller

can get from deviating from any solution x. Consider arbitrary (b, i)∈B×I and let c be the buyer

that i is recommended to and j seller currently recommended to b who can be displaced by i (i.e.

vbi > vbj).

Then

g≥ vbi∑
l∈I xblvbl − vbj + vbi

/
vci∑

l∈I xclvcl
,
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where the numerator is the purchase probability of i after transferring into b’s bundle and the

denominator is their current purchase probability with c. We rewrite this as

g ·

(∑
l∈I

xblvbl − vbj + vbi

)
≥ vbi

vci
·

(∑
l∈I

xclvcl

)
.

Define continuous variable zbi = g · xbi for all b ∈ B, i ∈ I. To ensure that zbi takes the appropriate

values, we require constraints

zbi ≥ 0, (EC.4)

zbi ≤ xbi ·G, (EC.5)

zbi ≤ g, (EC.6)

zbi ≥ g+(xbi − 1)G, (EC.7)

for all b∈B, i∈ I and some upper bound G on g. Substituting into the above we obtain∑
l∈I

zblvbl − gvbj + gvbi ≥
vbi
vci

·
∑
l∈I

xclvcl, (EC.8)

which should hold for all b ̸= c ∈ B, i ̸= j ∈ I as long as xbj = 1= xci and vbi > vbj. To enforce this

we create a new indicator variable

δcibj =

{
1, when xbj = 1= xci and vbi > vbj, and

0 otherwise.

Now we can rewrite eq. (EC.8) as∑
l∈I

zblvbl − gvbj + gvbi ≥
vbi
vci

·
∑
l∈I

xclvcl − (1− δcibj)M. (EC.9)

The following two constraints ensure that δcibj takes on the value 1 when expected,

(1− δcibj)M
′ ≥ vbj − vbi − (xbj +xbi − 2)M, (EC.10)

−δcibjM
′ ≤ vbj − vbi − (xbj +xbi − 2)M, (EC.11)

for M ′ > 2M. Observe that when xbj = 1 = xci and vbi > vbj, eq. (EC.10) does not bind and

eq. (EC.11) becomes −δcibjM
′ < 0, implying δcibj = 1. When xci + xct < 2, eq. (EC.10) becomes

(1− δcibj)M
′ ≥ 0, ensuring δcibj = 0, while (EC.11) does not bind. Similarly vbi ≤ vbj, implies δcibj = 0.

This yields the mixed integer program

ming

s.t. eqs. (EC.2) to (EC.3) (assignment constraints)

eqs. (EC.4) to (EC.7) ∀b∈B, i∈ I (linearization constraints)

eqs. (EC.9) to (EC.11) ∀b ̸= c∈B, i ̸= j ∈ I (stablity constraints)

g≥ 0, x∈ {0,1}|B|×|I|, z ∈ {0,1}|B|×|I|

δcibj ∈ {0,1}|B|×|I|×|B|×|I|
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When g≤ 1, no seller can improve their purchase probability by participating in a blocking pair

and the recommendation is stable.

EC.6.1. Scalability

We compare the computational cost of the integer program with the three recommendation strate-

gies in Section 5 by training SVD++, a matrix factorization based collaborative filter, on the

datasets described in Section 6.1. An instance is created setting k = 3 and randomly selecting

B ∈ {2,22, . . . ,28} buyers and a corresponding number of random items and taking the collabo-

rative filter’s estimated buyer-item ratings as values. The time it takes each approach to yield a

recommendation is visually represented in Figure EC.1. Clearly, the integer program does not scale

to reasonable sizes; we exclude it from further experiments. Maximizing buyer welfare performs

well on these tests, but may eventually present computational challenges. Round robin and greedy

top-k is consistently extremely fast for all problem sizes.

Figure EC.1 Time to find recommendations as function of the number of buyers with k= 5.

EC.7. Round robin is not stable or PO

Consider the instance with 2 buyers in Table EC.4 with picking order 1, 2. The resulting allocation

is boxed. It is not PO since exchanging a, b increases buyer 2’s utility while keeping 1’s unchanged.

It is also not stable since (2, a) is a blocking pair.

Table EC.4 RR instance

a b c d

Buyer 1 5 5 1 1

Buyer 2 50 1 1 1
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