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Abstract

We study the problem of fairly allocating m indivisible items among n agents. Envy-free alloca-
tions, in which each agent prefers her bundle to the bundle of every other agent, need not exist in the
worst case. However, when agents have additive preferences and the value vi,j of agent i for item j
is drawn independently from a distribution Di, envy-free allocations exist with high probability when
m ∈ Ω(n logn/ log log n).

In this paper, we study the existence of envy-free allocations under stochastic valuations far beyond
the additive setting. We introduce a new stochastic model in which each agent’s valuation is sampled
by first fixing a worst-case function, and then drawing a uniformly random renaming of the items,
independently for each agent. This strictly generalizes known settings; for example, vi,j ∼ Di may
be seen as picking a random (instead of a worst-case) additive function before renaming. We prove
that random renaming is sufficient to ensure that envy-free allocations exist with high probability in
very general settings. When valuations are non-negative and “order-consistent,” a valuation class that
generalizes additive, budget-additive, unit-demand, and single-minded agents, SD-envy-free allocations
(a stronger notion of fairness than envy-freeness) exist for m ∈ ω(n2) when n divides m, and SD-EFX
allocations exist for all m ∈ ω(n2). The dependence on n is tight, that is, for m ∈ O(n2) envy-free
allocations don’t exist with constant probability. For the case of arbitrary valuations (allowing non-
monotone, negative, or mixed-manna valuations) and n = 2 agents, we prove envy-free allocations exist
with probability 1−Θ(1/m) (and this is tight).

1 Introduction

We consider the fundamental problem of fairly allocating a setM of m indivisible items among a set N of
n agents. Each agent i has a valuation function vi : 2M 7→ R, which maps each subset of items S ⊆ M
to a value for S. In this domain, the gold standard of fairness is, arguably, envy-freeness. An allocation
A = (A1, A2, . . . , An) is envy-free if each agent prefers her own bundle to the bundle of every other agent,
that is, vi(Ai) ≥ vi(Aj) for all i, j ∈ N . It is easy to see that envy-free allocations do not exist in the worst
case: consider a single item and two agents valuing it positively.

Motivated to circumvent this simple non-existence result, a line of research in fair division studies the
existence of envy-free allocations under stochastic valuations. To date, this work has focused on additive
valuation functions.1 Dickerson et al. [DGK+14] show that when agents have additive and non-negative
valuation functions, and all item values are drawn independently from a distribution D, allocations that
simultaneously satisfy envy-freeness and Pareto efficiency exist with high probability for m ∈ Ω(n log n). On
the other hand, envy-free allocations do not exist with constant probability for m ∈ n + o(n). In the same

1A valuation function vi : 2
M 7→ R is additive if vi(S∪T ) = vi(S)+vi(T ) for all S, T ⊆ M, S∩T = ∅. An additive function

vi can be succinctly represented with a value vi,j for each item j ∈ M, such that vi(S) =
∑

j∈S vi,j for all S ⊆ M and i ∈ N .

1



setting, Manurangsi and Suksompong [MS20] show that an envy-free allocation exists with high probability
as long as m ≥ 2n and n divides m. When m is not “almost divisible” by n,2 an envy-free allocation is
unlikely to exist for m ∈ O(n log n/ log log n). Manurangsi and Suksompong [MS21] close this gap by proving
that envy-free allocations exist with high probability when m ∈ Ω(n log n/ log log n). More recently, Bai and
Gölz [BG22] extend these bounds (m ∈ Ω(n log n/ log log n) for envy-freeness and Ω(n log n) for envy-freeness
plus Pareto efficiency) to the additive non-i.i.d. case where item values drawn independently from (agent
specific) distributions Di.

We investigate the existence of envy-free allocations under stochastic valuations beyond the additive case.

1.1 Our Contribution

Before asking if envy-free allocations exist for valuations beyond additive, it is necessary to specify a stochas-
tic model for generating such valuations. “Beyond additive” models are common in mechanism design in
the context of maximizing expected value or revenue. For example, in the literature on prophet inequalities
(see [Luc17] for a recent survey) valuation functions are typically drawn from distributions over families
of functions (e.g. submodular or XOS functions). In the literature on auctions, the predominant “beyond
additive” model is the “C over independent items” model for a condition C (e.g. “subadditive over indepen-
dent items”), introduced by [RW18], where, informally, an agent’s valuation function is parameterized by a
vector of types, drawn from a product distribution.3 In both these models, however, it is easy to reconstruct
the simple “two agents, one item” counterexample, e.g. by picking a valuation function/distribution over
valuation functions such that item 1 has more value than all other items combined. And, importantly, this
counterexample does not go away as the number of items grows. To bypass such trivial lower bounds, we
need a stochastic model that is neutral with respect to items, that is, there is no a priori “discrimination”
between items.

Our model. Our first contribution is to introduce such a neutral model for stochastic valuations. First, fix a
worst-case valuation function for each agent. Then, rename the items uniformly at random and independently
across agents. Slightly more formally, fix a worst-case valuation function vi : 2|M| → R for agent i, and
sample a uniformly random permutation πi :M→M. The valuation vπi

i (S) for a subset of items S after
renaming is equal to vi(π

−1
i (S)). To see that this model generalizes the standard stochastic additive setting

where vi,j ∼ Di, observe that the distribution over values is invariant with respect to taking a random
permutation of the items (renaming). Accordingly, our positive results imply positive results in the old
setting (among others).

Initially, it might appear that our model should still allow trivial lower bounds, since renaming does
not tell us anything about how values for bundles concentrate, and (to the best of our knowledge) the
concentration of values was necessary for all previous “envy-free with high probability” results. For example,
consider an identical additive function (vi,j = 1 for all i ∈ N , j ∈M), where random renaming has no power.
For this function, a necessary condition for envy-free allocations to exist is that m is divisible by n. For
an arbitrary worst-case function, one may naturally expect additional conditions (beyond divisibility) for
envy-free allocations to exist with high probability. Surprisingly, this is not the case: divisibility is sufficient
for strong positive results in this model.

EF allocations under order-consistent valuations. We first consider a structured valuation class that
strictly generalizes additive valuations in Section 3. Given an order over the items π, we say that a subset
of items A stochastically dominates a subset of items B, denoted as A ⪰sd

π B, when the best item in A
(according to π) is weakly better than the best item in B, the second best item in A is weakly better than
the second best item in B, and so on. We say that a valuation function v is order-consistent with respect
to π if, for all bundles A,B ⊆ M, A ⪰sd

π B implies that v(A) ≥ v(B). By picking π to be the items
sorted in order of decreasing value, it is clear that additive valuations are order-consistent. Similarly, budget

2Formally, when the remainder of the division is not between nϵ and n− nϵ for some constant ϵ ∈ (0, 1).
3See [RW18, RS17, CZ17, CM16] for more details about this model.

2



additive,4 single-minded,5 and unit-demand6 valuations are also order-consistent. This valuation class was
also considered by Bouveret et al. [BEL+10], who study various algorithmic and complexity questions (in
the worst-case model).

We prove that, given n arbitrary order-consistent valuation functions over m items, where m is divisible

by n, the probability that an envy-free allocation exists after random renaming is at least 1−O
(

n2

m + n logm

m
n−1
n

)
(Theorem 1). In fact, we prove the existence of a stronger notion of fairness, SD-envy-freeness: an allocation
A is SD-envy-free if, for all agents i, j ∈ N , Ai ⪰sd

πi
Aj . As a corollary, we get that for m ∈ ω(n2), SD-envy-

free allocations exist with high probability. By “high probability” we mean that for all n and δ > 0, there
exists a m0 = m0(n, δ) such that, for all m > m0, the probability is at least 1− δ.

Our proof of Theorem 1 is constructive; we show that a simple Round-Robin process (agents take turns
picking the best, according to their order, available item) produces such an allocation. Specifically, for
arbitrary agents i, j ∈ N , we upper bound the probability that i does not sd-prefer their bundle over j’s,
i.e. Ai ̸⪰sd

πi
Aj . For this to happen, there must be some 1 ≤ k ≤ m/n such that i prefers j’s k-th best item

(according to i) over i’s k-th best item. At a high level, we’d like to compute this probability, and then take
a union bound over k (and then another union bound over all pairs of agents). Notice that for k = 1 this
probability is already Θ(n/m), so, in order to afford all the union bounds, it better be the case that the true
probabilities of the bad events are much smaller than n/m, and that our analysis is relatively tight. For all
items k < m/n, i.e. all items except the last one picked by i, we can directly upper bound the probability
that i prefers j’s k-th best item. The analysis leverages the insight that, from i’s perspective, and over the
random draws of π−i, items picked by other agents look like (uniformly) random selections from the pool of
remaining items; therefore, the distribution of other agents’ bundles is identical. For i to prefer j’s k-th best
item over their own, j must have selected k items all better than i’s k-th pick, which can only occur if these
items have all been picked in rounds 1 through k; this event is unlikely. The precise bound is Θ(1/

(
m/n
k

)
) (see

Lemma 4), and requires carefully accounting for the items remaining at each step of Round-Robin, coupled
with careful applications of known facts about the gamma function (e.g. Gautchi’s inequality [Gau59]).
When k = m/n, previous arguments fail to yield a sufficiently small probability. Instead, define L as the set
of (roughly) 3n logm worst items of agent i. We show that neutrality implies that, with high probability, by
the time i picks their m/n-th and worst item, all items in L have been picked by others. When this happens,
i must like their worst item more than the worst (from i’s perspective) item of every agent who picked an
item in L. Moreover, conditioned on all items in L being picked by the time of i’s last pick, it is very likely
that every other agent received at least one of these items in L.

Since |Ai| > |Aj | immediately implies that Aj ̸⪰πj
Ai, m being divisible by n is a necessary condition

for envy-freeness. Moreover, standard birthday paradox arguments imply (even for unit-demand valuations)
that envy-free allocations may not exist with constant probability for m ∈ O(n2). This shows Theorem 1
is tight both in terms of the divisibility assumption and the bound on m. When n does not divide m, we

guarantee a weaker notion of fairness called SD-EFX78, again with probability at least 1−O
(

n2

m + n logm

m
n−1
n

)
.

Though the relation between m and n is asymptotically tight in Theorem 1, we show that it is possible
to get better probability bounds for the important case when n is small, i.e., when n is a constant. Taking,
for example, the case of n = 2, Round-Robin will not find an SD-EF allocation with probability Ω(1/

√
m),

while a careful analysis would say that such allocations don’t exist with probability Ω(1/m). This difference
is caused by the fact that if n is small, the last item in Round-Robin is given to the “wrong” person. This
motivates a new algorithm to close this gap. Our algorithm, “Give-Away Round-Robin,” initially has every
agent give each other agent their least desired remaining item and then proceeds with the standard Round-
Robin algorithm. The probability of Round-Robin failing is greatest at the beginning and end of the process:

4A valuation is budget additive with budget B if each item j has value vj and the value of S ⊆ M is v(S) = min{B,
∑

j∈S vj}.
5A valuation is single-minded if there is a subset S∗, such that v(S) = v(S∗) > 0 for all S ⊇ S∗, and v(S) = 0 otherwise.
6A valuation is unit-demand if there is a value vj for each item j, and the value for a subset of items S is equal to maxj∈S vj .
7In an EFX allocation, it holds that every agent i does not envy a different agent j after the removal of any item from j’s

bundle. The definition of SD-EFX (with respect to EFX) is analogous to the definition of SD-EF (with respect to EF).
8In Appendix C we show that SD-EFX allocations do not exist for additive valuations. In contrast, the existence of EFX

allocation remains an elusive open problem.
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at the beginning of the process, SD-EF fails if any other agent picks i’s most preferred item; towards the
end, there is a risk that all the remaining items are bad. Give-Away Round Robin gains by ensuring that
every other agent receives one of i’s worst items, making sure that agent i does not receive her least preferred
items. At the same time, the analysis becomes significantly trickier. For Round-Robin we could be certain
that, other than the last item, items picked by agent i are “good” in the sense that they were the best in
some pool of items. For Give-Away Round-Robin, each agent essentially starts with a small, random set
of items. Therefore, arguing that SD-EF does not fail because of, say, the first ten items is not clear at
all. In our analysis, we consider various cases (failure because of “high,” “middle,” “low,” and last items),
which need delicate, separate handling. In Theorem 2, we show that, when m is divisible by n, Give-Away
Round-Robin outputs an SD-EF allocation with probability at least 1− Õn

(
1
m

)
.

EF allocations under arbitrary valuations. In Section 4, we proceed to study arbitrarily general
valuations for the case of n = 2 agents. We impose no constraint on the valuation function: it can be
superadditive, non-monotone, or negative for some bundles and positive for others. By picking a valuation
function such that bundles of size strictly less than m/2 and strictly more than m/2 are worthless and
noticing that random renaming will not affect this property, we conclude that, if envy-free allocations exist,
they must allocate exactly m/2 items to each agent (and therefore, m must be even). Next, if the valuation
function is indifferent between a set of size m/2 and its complement, then an envy-free allocation trivially
exists; therefore we can assume that, without loss of generality, a subset of size m/2 and its complement
have different values for every agent i. Randomly renaming a “preferred” subset of size m/2 maps it
to a non-preferred set with probability 1/2. Surprisingly, we find that for an even number of items and
arbitrary valuation functions v1, v2, the probability that an envy-free allocation exists after random renaming
is 1 − 1

m/2+1 (Theorem 5). This bound is almost tight: there exist instances with additive valuations such

that an envy-free allocation doesn’t exist with probability 1/m. Our result is based on the following insight:
a valuation function can be represented as an m/2-uniform hypergraph on m vertices. Given this, a random
permutation of the item names corresponds to picking a random, isomorphic hypergraph. Whenever the
hypergraphs corresponding to the two agent’s valuation functions are not identical an envy-free allocation
exists — allocate i the bundle corresponding to the hyperedge present in i’s hypergraph and not j’s. Using
the orbit-stabilizer theorem, we reduce our question about the existence of envy-free allocations to a question
about the number of automorphisms of k-uniform hypergraphs. In Theorem 4, we prove that the number
of automorphisms of a k-uniform hypergraph on m vertices is at most m!

m−k+1 . This is the main technical
result used to establish Theorem 5 and may be of independent interest.

1.2 Related Work

Dickerson et al. [DGK+14] initiated the study of asymptotic fair division and showed that the welfare
maximizing algorithm (allocate each good to the agent with the highest value for it) is envy-free with
high probability for m ∈ Ω(n log n) for the case of additive, non-negative valuations. Manurangsi and
Suksompong [MS20, MS21] establish tight bounds for the existence of envy-free allocations in this setting:
m ∈ Ω(n log n/ log log n) is a necessary and sufficient condition; similar to our Theorem 1, this bound is
achieved by the classic Round-Robin algorithm. Bai and Gölz [BG22] extend these results to the case of
independent but non-identical additive agents. Kurokawa et al. [KPW16] and Farhadi et al. [FGH+19]
show that weaker notions of fairness, namely maximin share fairness, also exist with high probability. For
non-additive stochastic valuations, Manurangsi and Suksompong [MS21] and Gan et al. [GSV19] study the
so-called house allocation problem, where there are m houses, n agents, with vi,j ∼ Di for each agent i
and house j, and each agent must be allocated a single house; equivalently, one can think of unit-demand
valuations and independently picking a uniformly random ranking of the items for each agent. The former
paper shows that an envy-free assignment is likely to exist if m/n > e + ϵ, for any constant ϵ > 0, but
unlikely to exist if m/n < e− ϵ.

The existence of fair allocations, and their compatibility with efficiency, has also been studied in dynamic
settings with additive valuations [BKPP18]. The algorithms of Dickerson et al. [DGK+14] and Bai and
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Gölz [BG22] can be readily applied even when items arrive in an online fashion, implying that Pareto
efficiency ex-post and envy-freeness with high probability are compatible even in an online setting. The
same result was recently shown to be (approximately) true even when the designer doesn’t have access to
the exact values of the agents [BHP22], or even when agents’ valuations are correlated [ZP20, BKP+22].

Bouveret et al. [BEL+10] study preferences represented by SCI-nets, which take the form of a partial
order over bundles induced by a linear ordering over items. Order-consistent valuations are exactly those
where pairwise dominance of bundles implies envy-freeness. As opposed to our interest here, [BEL+10] are
interested in computational aspects of the problem (e.g., the complexity of computing an envy-free allocation
in the worst-case).

A related research direction is smoothed analysis. Traditionally, in smooth analysis, an instance is
generated by starting from a worst-case instance and adding a small amount of noise. This model has been
widely successful in circumventing computational hardness [ST04, BS95, FK98, KMM11]. More recently,
this model has been used to bypass impossibility results in social choice [Xia20, Xia21, FHP22, Xia21],
mechanism design [PSW19, BG21, BCH+17], and, closer to this paper, fair division [BFGP22]. Specifically,
Bai et al. [BFGP22] start from a worst-case instance for additive agents and add an independent boost to
the value of each item for each agent; the authors give sufficient conditions (on the boosting) for envy-free
allocations to exist with high probability. One could interpret our model as a smoothed/semi-random model
which starts from a worst-case instance and adds noise in the form of random renaming. In contrast with
existing models, we permute the items and leave the valuation function untouched.

Further afield, motivated by the non-existence of envy-free allocations in the worst case, a growing
literature in fair division studies relaxed versions of envy-freeness. For example, an allocation is envy-free
up to one good (EF1) [Bud11] if every agent i prefers her bundle to the bundle of any other agent j after
the removal of some item (from j’s bundle). Such allocations are known to exist in the worst-case, even for
monotone and non-negative valuations [LMMS04]. For additive valuations, there are allocations that are EF1
and Pareto efficient, but not for subadditive or supermodular valuations [CKM+19]. A different relaxation
of envy-freeness is envy-free up to any good (EFX) [CKM+19], which states that every agent i prefers her
bundle to the bundle of any other agent j after the removal of any item (from j’s bundle). Such allocations
are known to exist for the case of two agents with general valuations [PR20], identical agents [PR20], and
three additive agents [CGM20]; a major open problem is whether EFX allocations exist for a general number
of (even additive) agents.

2 Preliminaries

We consider the problem of dividing a set M of m indivisible items among a set N of n ≥ 2 agents.
Throughout, we assume N = {1, 2, . . . , n} and the items are indexed by 1, 2, . . . ,m. An allocation A =
(A1, A2, . . . , An) is an n-partition of the set of itemsM, where Ai denotes the set of items allocated to agent
i ∈ N . That is, in any allocation A, all items are allocated,

⋃
i∈N Ai =M, and each item is allocated to

only one agent, Ai ∩ Aj = ∅ for all distinct agents i, j ∈ N . We sometimes refer to a subset of items as a
bundle.

Each agent i ∈ N has a valuation function vi : 2
M 7→ R, which maps each subset of items S ⊆ M to

vi(S), the agent’s value for S. We are interested in proving the existence of allocations that are fair with
respect to the agent valuations. Our primary notion of fairness is envy-freeness.

Definition 1 (Envy-freeness). An allocation A = (A1, . . . , An) is envy-free (EF) iff each agent prefers her
own bundle over the bundle of any other agent, i.e., for all agents i, j ∈ N , we have vi(Ai) ≥ vi(Aj).

For the case of indivisible items, envy-freeness can be too stringent of a requirement. A common relaxation
is called envy-freeness up to any good, or EFX.

Definition 2 (Envy-freenesss up to any good (EFX)). An allocation A is envy-free up to any good (EFX)
iff for all agents i, j ∈ N where Aj ̸= ∅, we have v(Ai) ≥ v(Aj \ {g}) for all items g ∈ Aj.
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In Section 3, we focus on a class of valuation functions that are consistent with an underlying preference
order over the items. Given an ordering of the items π = g1 ≻ g2 ≻ · · · ≻ gm, we can define a partial
order over bundles ⪰sd

π as follows. Let A, Â ⊆M be any two bundles such that A = {gσ1
, gσ2

. . . , gσ|A|} and
A = {gσ̂1

, gσ̂2
. . . , gσ̂|Â|

} where sequences σ and σ̂ are sorted in an increasing order. We say that A ⪰sd
π Â iff

|A| ≥ |Â| and for all k ∈ {1, 2, . . . , |Â|}, we have σk ≤ σ̂k. Additionally, A ≻sd
π Â iff A ⪰sd

π Â and A ̸= Â.

Definition 3 (Order-consistency). A valuation function v : 2M 7→ R is called order-consistent with respect
to an ordering π iff for all bundles A,B ⊆ M, A ⪰sd

π B implies that v(A) ≥ v(B). If v is order consistent
with respect to some order π, we will simply call v order-consistent.

Definition 4 (SD-EF). Suppose that each agent i ∈ N has a valuation function vi which is order-consistent
with respect to πi. An allocation A is sd-envy-free (SD-EF) iff for all i, j ∈ N we have Ai ⪰sd

πi
Aj.

SD-EF allocations are also EF. In fact, an allocation A which is SD-EF for agents with valuation
functions v1, v2, . . . , vn that are order-consistent with respect to π1, π2, . . . , πn, respectively, is EF for agents
all valuation functions v̂1, v̂2, . . . , v̂n that are order-consistent with respect to π1, π2, . . . , πn respectively.
When an allocation A = (A1, A2, . . . , An) is SD-EF, it follows that |Ai| = |Aj | for all i, j ∈ N , i.e., the
number of items are a multiple of the number of agents, m = qn for some integer q ∈ N. When m ̸= qn (for
q ∈ N), we consider the analogous strengthening of EFX.

Definition 5 (SD-EFX). Suppose each agent i ∈ N has a valuation function vi that is order-consistent with
respect to πi. An allocation A is sd-envy-free up to any item (SD-EFX) iff for all agents i, j ∈ N , where
Aj ̸= ∅, we have Ai ⪰sd

πi
Aj \ {g} for all items g ∈ Aj.

As with SD-EF and EF, an allocation A which is SD-EFX is also A is EFX. While the existence of EFX
remains unknown, in Appendix C, we give an instance for which SD-EFX allocations do not exist.

Finally, if v is a valuation function and π is a permutation over items, we will use the notation vπ to
represent the permuted valuation function after random renaming, where vπ(S) := v(π−1(S)), and π(S) :=
{π(g) : g ∈ S}. If v is an order-consistent valuation, then vπ is order-consistent with respect to π.

3 Order-Consistent Valuations

Our first main result is that SD-EF allocations exist with high probability for order-consistent valuation
functions. In fact, the well-known Round-Robin algorithm, presented as Algorithm 1, outputs such allo-
cations (with high probability) in polynomial time. Round-Robin takes as input an ordering of the items
for each agent, and agents take turns taking the best available remaining item according to this order. As
long as Round-Robin has access to these orderings after renaming (that is, no other information about the
valuation functions is needed), and as long as m is divisible by n, Round-Robin will result in an SD-EF
allocation with high probability. The precise probability is asymptotically optimal. Beyond this, if m is not
divisible by n (so there is no hope for an EF allocation), Round-Robin will find an SD-EFX allocation with,
once again, asymptotically optimal probability.

Theorem 1. Let π1, . . . , πn be sampled independently and uniformly at random. When m = qn, q ∈ N,

Pr [Round Robin is SD-EF] ≥ 1−O

(
n2

m
+

n logm

m
n−1
n

)
.

Further, for any m,

Pr [Round Robin is SD-EFX] ≥ 1−O

(
n2

m

)
,

and, if m ≥ 2n,

Pr [No SD-EFX allocation exists] ∈ Ω

(
min

(
n2

m
, 1

))
.
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Algorithm 1: Round Robin Algorithm

Input : Valuations v1, . . . , vn which are order consistent with respect to π1, . . . , πn.
Output: Allocation A = (A1, A2, . . . , An)

Set Ai ← ∅ for all agents i ∈ N
Set P ←M
for i = 1, . . . , n, 1, . . . , n, 1, . . . do

Let g ∈ P be the unallocated item with the lowest index in πi.
Set Ai ← Ai ∪ {g}
Set P ← P \ {g}

return (A1, A2, . . . , An)

Notice that if m ∈ ω(n2), then, as n grows, SD-EF/SD-EFX allocations exist with high probability.
The lower bound on the non-existence of SD-EFX implies that when m ∈ O(n2), no SD-EF (or even EF)
allocation exists. In this sense, Round-Robin is asymptotically optimal.

For ease of exposition, we break the proof of Theorem 1 into separate lemmas. We first assume that
m = qn for some integer q, and prove the existence of SD-EF allocations.

Lemma 1 (Round-Robin is SD-EF). When m = qn, Pr [Round Robin is SD-EF] ≥ 1−O
(

n2

m + n logm

m
n−1
n

)
.

Second, we show how to extend our arguments to the case of arbitrary m and show the existence of
SD-EFX allocations.

Lemma 2 (Round-Robin is SD-EFX). For any m, Pr [Round Robin is SD-EFX] ≥ 1−O
(

n2

m

)
.

Finally, we show the lower bound on the probability that SD-EFX allocations exist.

Lemma 3. For any m, if m ≥ 2n, Pr [No SD-EFX allocation exists] ∈ Ω
(
min

(
n2

m , 1
))

.

The three lemmas combined imply Theorem 1. We prove Lemma 1 in Section 3.1. Lemma 2 largely
follows the same proof; we prove it in Section 3.2. Finally, Lemma 3 is proved in Section 3.3.

In Section 3.4, we observe that, even though Round-Robin is asymptotically optimal as n grows, for the
important case of small (i.e., constant) n, it leaves a small gap in our understanding. We introduce a new
algorithm, Give-Away Round Robin, which closes this gap.

3.1 Round-Robin is SD-EF: The proof of Lemma 1

Our goal will be to show that the probability that Round-Robin does not output an SD-EF allocation is

at most 33n2

m + 16n logm
m1−1/n . We restrict our analysis to m and n such that m ≥ 2n and n logm

mn−1/n ≤ 1/16, since
otherwise, our target upper bound holds trivially. Fix m, n, and q such that m = qn. In each round of the
Round-Robin algorithm, lower-indexed agents pick before higher-indexed ones, and therefore the former do
not envy the latter. That is, agent i can only envy agent j’s bundle if j < i. For agents i, j ∈ N with j < i,
let E ij be the event that Ai ̸⪰sd

πi
Aj , i.e., agent i does not sd-prefer their own bundle over that of agent j.

The probability that the final allocation is not SD-EF is then exactly the probability that one of these events

occurs; formally, Pr
[⋃

i∈N
⋃

j:j<i E ij
]
.

We use g ≻i g
′ to denote that item g is preferred to item g′ under πi. For a set of items S ⊆M, we write

g ≻i S when g is preferred to all items in S, i.e., g ≻i g
′ for all g′ ∈ S. Additionally, we use Pt to denote

the pool of available items at “time” t, i.e., after t picks have been made (so, P0 =M and Pm = ∅). Let
gt be the t’th item picked during the execution of the Round Robin algorithm, that is, Pt+1 = Pt \ {gt+1}.
Since agents pick items sequentially as per their index, gt is picked by agent j exactly when t ≡ j mod n,
g(ℓ−1)n+j is the ℓ’th item picked by agent j, and Aj =

{
g0·n+j , . . . , g(q−1)n+j

}
.
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Taking the perspective of agent i, let bijk denote the k’th best item according to πi in the final bundle
Aj ; we will write bjk if the agent i is clear from the context. For agent i’s picks, bik = g(k−1)n+i, i.e., their
k’th pick is also their k’th favorite item in their bundle. However, this is not the case for items in others’
bundles. Since the final bundles are all of size q, Ai ⪰sd

πi
Aj exactly when bik ≻i bjk for all k ≤ q. Hence, we

decompose the event E ij into events E ijk , where E ijk is the event that bjk ≻i bik. Now E ij =
⋃q

k=1 E
ij
k , and

(by a union bound) our goal will be to upper bound

∑
i∈N

q∑
k=1

Pr

 ⋃
j:j<i

E ijk

 . (1)

Fix an agent i and value k. To get a handle on Pr
[⋃

j∈N :j<i E
ij
k

]
, we condition on agent i’s ordering of the

items, πi. Whenever agent i picks gt, gt must be the best item remaining in Pt−1 according to πi. When agent
j ̸= i picks gt (so t ̸≡ i (mod n)), the distribution of gt over the random draws of π−i = {π1, . . . , πn} \ {πi},
even conditioned on all previous picks g1, . . . , gt−1, is uniformly random over Pt−1. Let Rℓ be the set of
items picked between agent i’s ℓ’th and (ℓ + 1)’th pick. That is, R0 = {g1, . . . , gi−1}, for 1 ≤ ℓ ≤ q − 1,
Rℓ =

{
gn(ℓ−1)+i+1, . . . , gℓn+i−1

}
, and Rq =

{
gn(q−1)+i+1, . . . , gm

}
. From the perspective of agent i, each

item in Rℓ is picked sequentially and uniformly at random from the remaining items. This allows us to
analyze an equivalent two-step process wherein (1) Rℓ is first selected uniformly at random from Pt, after
which, (2) each item in Rℓ is matched to a uniformly random agent (different than i) that picked in the
corresponding timesteps.

We upper bound the expression in (1) by upper bounding each of the summands. Our analysis splits into
cases based on the value of k, as care must be taken when comparing i’s worst item to that of other agents.

Lemma 4. For k < q, it holds that Pr
[⋃

j:j<i E
ij
k

]
≤ 8

(qk)
.

Lemma 5. For k = q, it holds that Pr
[⋃

j:j<i E ijq
]
≤ n

m + 2
(

8n logm
m1−1/n

)n+1−i

.

We show how to conclude the proof of Lemma 1 given these two lemmas, then proceed to prove them.
Using Lemmas 4 and 5, we have

Pr

⋃
i,j

E ij
 ≤∑

i∈N

q−1∑
k=1

Pr

⋃
j

E ijk

+ Pr

⋃
j

E ijq


≤
∑
i∈N

(
q−1∑
k=1

8(
q
k

) + n

m
+ 2

(
8n logm

m1−1/n

)n+1−i
)

= 8n

q−1∑
k=1

1(
q
k

) + n2

m
+ 2

n∑
i=1

(
8n logm

m1−1/n

)n+1−i

.

We now bound each of these sums. For the first,

q−1∑
k=1

1(
q
k

) ≤ 1(
q
1

) + 1(
q

q−1

) + q−2∑
k=2

1(
q
k

) ≤ 2

q
+

q−2∑
k=2

1(
q
2

) =
2

q
+

2(q − 3)

q(q − 1)
≤ 4

q
=

4n

m
. (2)

For the second, since 8n logm
m1−1/n ≤ 8/16 = 1/2,

n∑
i=1

(
8n logm

m1−1/n

)n+1−i

=

n∑
i=1

(
8n logm

m1−1/n

)i

≤
∞∑
i=1

(
8n logm

m1−1/n

)i

=
8n logm
m1−1/n

1− 8n logm
m1−1/n

≤ 16n logm

m1−1/n
.
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We conclude that

Pr

⋃
i,j

E ij
 ≤ 33n2

m
+

16n logm

m1−1/n
∈ O

(
n2

m
+

n logm

m
n−1
n

)
,

as needed.

Proof of Lemma 4. We will directly upper bound each Pr
[
E ijk
]
and union bound over the (at most) n possible

choices of j. The equivalent random process of picking Rℓ and assigning each item randomly discussed above

implies Pr
[
E ijk
]
= Pr

[
E ij

′

k

]
, for each j, j′ < i. Indeed, the items assigned to j and j′ in this process appear

in exactly the same Rℓ sets. Now the distributions of Aj and Aj′ are identical even when conditioning on

Ai. As a result, we only upper bound Pr
[
E ijk
]
for j = i− 1; the same bound holds for all agents that i could

possibly envy (i.e., for all agents j′ with j′ < i).
Consider the item g(k−1)n+i, which is picked by i in the k’th round. As noted above, g(k−1)n+i = bik, so

E ijk occurs exactly when bjk ≻i bik = g(k−1)n+i. This can only occur if there are k timesteps, t1, . . . , tk, such
that j picks an item gtz satisfying gtz ≻i g(k−1)n+i. For any t > (k − 1)n+ i, g(k−1)n+i ≻i gt, since i always
picks the best available remaining item. Hence, all k of these (unfortunate) picks must have occurred before
i’s k’th pick. Agent j made exactly k picks before i made their k’th pick, so for bjk ≻i g(k−1)n+i to hold, a
necessary and sufficient condition is that all these picks were preferred to g(k−1)n+i (according to πi), i.e.,
g(ℓ−1)n+j ≻i g(k−1)n+i for all ℓ = 1, . . . , k.

Let P
(r)
t be the r’th best item remaining in Pt according to πi. For all t < t′, |Pt \ Pt′ | = t′ − t, i.e.,

there are t′− t fewer items available after t′− t picks. This implies that for all t < (k− 1)n+ i, g(k−1)n+i ⪰i

P
((k−1)n+i−t)
t .9 Furthermore, g(k−1)n+i = P

(1)
(k−1)n+i−1 as i picks the best available item remaining at time

(k− 1)n+ i− 1. |Pt \P((k−1)n+i−1)| = (k− 1)n+ i− t− 1, so at least one of P
(1)
t , . . . , P

((k−1)n+i−t)
t must be

available at time (k − 1)n + i − 1, and the best available item at time (k − 1)n + i − 1 must be at least as

good as the worst of these. This implies that if g(ℓ−1)n+j ≻i g(k−1)n+i, then g(ℓ−1)n+j ≻i P
((k−ℓ)n+(i−j)+1)
(ℓ−1)n+j−1 .

Using the fact that j = i−1, this simplifies to g(ℓ−1)n+j ⪰i P
((k−ℓ)n+1)
(ℓ−1)n+j−1or, in words, agent j’s ℓ’th pick must

be one of the top (k − ℓ)n+ 1 available items according to πi. This necessary condition means that

Pr
[
E ijk
]
≤ Pr

[
k⋂

ℓ=1

{
g(ℓ−1)n+j ⪰i P

((k−ℓ)n+1)
(ℓ−1)n+j−1

}]
.

The key observation is that each of the events g(ℓ−1)n+j ⪰i P
((k−ℓ)n+1)
(ℓ−1)n+j−1, over the samples of π−i, are mutually

independent. Hence, we get

Pr

[
k⋂

ℓ=1

{
g(ℓ−1)n+j ⪰i P

((k−ℓ)n+1)
(ℓ−1)n+j−1

}]
=

k∏
ℓ=1

Pr
[
g(ℓ−1)n+j ⪰i P

((k−ℓ)n+1)
(ℓ−1)n+j−1

]
.

Furthermore, g(ℓ−1)n+j is a uniform random sample from P(ℓ−1)n+j−1, so

Pr
[
g(ℓ−1)n+j ⪰i P

((k−ℓ)n+1)
(ℓ−1)n+j−1

]
=

(k − ℓ)n+ 1

|P(ℓ−1)n+j−1|
.

Noticing that |Pt| = m− t, we get that,

Pr
[
E ijk
]
=

k∏
ℓ=1

(k − ℓ)n+ 1

|P(ℓ−1)n+j−1|
=

k∏
ℓ=1

(k − ℓ)n+ 1

m− ((ℓ− 1)n+ j − 1)
=

k∏
ℓ=1

(k − ℓ)n+ 1

(q − ℓ)n+ n− j + 1
(3)

9And this is tight only when all picks gt, . . . , g(k−1)n+i−1 are preferred to g(k−1)n+i in πi.
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≤
k∏

ℓ=1

(k − ℓ)n+ 1

(q − ℓ)n+ 1
=

k∏
ℓ=1

k − ℓ+ 1/n

q − ℓ+ 1/n
=

∏k−1
ℓ=0 (1/n+ ℓ)∏k−1

ℓ=0 (q − k + 1/n+ ℓ)
=

(1/n)k

(q − k + 1/n)k
.

The inequality follows because (n− j) ≥ 0, and the second to last equality follows by a change of variables.
The notation (x)r here represents the rising factorial (x)r = x(x + 1) · · · (x + r − 1). We make use of the

known equality (x)r = Γ(x+r)
Γ(x) to get that

Pr
[
E ijk
]
=

Γ(k + 1/n)

Γ(1/n)
· Γ(q − k + 1/n)

Γ(q + 1/n)
≤ 2

n
· Γ(k + 1/n)Γ(q − k + 1/n)

Γ(q + 1/n)
,

where we replaced Γ(1/n) by using the fact that Γ(1 + x) = xΓ(x) for all x (which implies that Γ(1/n) =
nΓ(1 + 1/n)), and that the Γ function has a global minimum on the positive reals above 1/2 [Wre68] (and
thus, nΓ(1 + 1/n) ≥ n

2 ).
Ideally, we could replace the 1/n terms inside the gamma function with 1s, which would allow us to

convert the Gammas to the corresponding factorial terms, and would simplify to 1/
(
q
k

)
. We show that this

is approximately correct by making use of Gautchi’s inequality [Gau59], which states

x1−s ≤ Γ(x+ 1)

Γ(x+ s)
≤ (x+ 1)1−s,

for all x > 0 and s ∈ (0, 1). We state our bound as the following claim, the proof of which is deferred to
Appendix B.

Claim 1. 2
n ·

Γ(k+1/n)Γ(q−k+1/n)
Γ(q+1/n) ≤ 8

n ·
1

(qk)
.

Therefore, for all j < i and k < q, Pr
[
E ijk
]
≤ 8

n ·
1

(qk)
. Union bounding over the (at most) n possible

values of j, we have that

Pr

 ⋃
j:j<i

E ijk

 ≤ 8(
q
k

) . (4)

Proof of Lemma 5. Let L ⊆M be the set of the bottom ⌈3n logm⌉+ (n− 1) items according to πi. Notice
that ⌈3n logm⌉+ (n− 1) ≤ 3n logm+ n ≤ 4n logm since log(m) ≥ log(2n) ≥ log(4) ≥ 1.10 Recall that biq
is the worst item in agent i’s bundle. We consider the event that biq /∈ L. We show that the probability of
biq ∈ L is small and, conditioned on biq /∈ L, it is unlikely that i envies anyone. Formally, notice that

Pr

 ⋃
j:j<i

E ijq

 = Pr

 ⋃
j:j<i

E ijq

∣∣∣∣∣∣ biq /∈ L

 · Pr [biq /∈ L] + Pr

 ⋃
j:j<i

E ijq

∣∣∣∣∣∣ biq ∈ L

 · Pr [biq ∈ L]

≤ Pr

 ⋃
j:j<i

E ijq

∣∣∣∣∣∣ biq /∈ L

+ Pr [biq ∈ L]

≤
∑
j:j<i

Pr
[
E ijq
∣∣ biq /∈ L

]
+ Pr [biq ∈ L] .

We upper bound each of these terms individually.

Claim 2. For all j < i, Pr
[
E ijq
∣∣ biq /∈ L

]
≤ 1/m.

Claim 3. Pr [biq ∈ L] ≤ 2
(

8n logm
m1−1/n

)n+1−i

.

10We always interpret log as the natural log.
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Given these two bounds, we can conclude the proof of the lemma as follows:

Pr

 ⋃
j:j<i

E ijq

 ≤ ∑
j:j<i

Pr
[
E ijq
∣∣ biq /∈ L

]
+ Pr [biq ∈ L] ≤ n

m
+ 2

(
8n logm

m1−1/n

)n+1−i

. (5)

It remains to prove the two claims.

Proof of Claim 2. Notice that biq /∈ L implies Ai ∩ L = ∅, so all the items in L must have been chosen by
other agents. If Aj ∩ L ̸= ∅ it follows that bjq ∈ L and, hence, biq ≻i bjq. Therefore, Pr

[
E ijq
∣∣ biq /∈ L

]
≤

Pr [Aj ∩ L = ∅ | biq /∈ L] and it suffices to upper bound the latter.
To analyze the bundle of an agent j ̸= i, we revert to the second view of the allocation process in which

the bundles R0, . . . , Rq are first sampled and then matched to agents different that i. We condition on any
valid R0, . . . , Rq such that L ⊆

⋃
ℓ Rℓ, and now consider sampling the actual bundles Aj′ for j′ ̸= i from

these. Except for R0 and Rq, each |Rℓ| = n− 1 and Aj contains exactly one item from Rℓ chosen uniformly

at random. Therefore, with probability |Rℓ∩L|
n−1 , Aj ∩Rℓ ∩L ̸= ∅. In words, if there are r items from L in Rℓ,

then j receives one of them with probability r/(n− 1). Importantly, these are independent across rounds ℓ.
It follows that

Pr [Aj ∩ L = ∅ | biq /∈ L] ≤ Pr

[
q−1∑
ℓ=1

I[Aj ∩ L ∩Rℓ = ∅] = 0

]
.

By linearity of expectation and the choice of L,

E

[
q−1∑
ℓ=1

I[Aj ∩ L ∩Rℓ]

]
=

q−1∑
ℓ=1

|Rℓ ∩ L|
n− 1

≥ |L| − |R0| − |Rq|
n− 1

≥ |L| − (n− 1)

n− 1
≥ 3n logm

n− 1
≥ 3 logm. (6)

The sum
∑q−1

ℓ=1 I[Aj ∩L∩Rℓ = ∅] is the sum of independent Bernoulli variables indicating whether j received
an item from L in round ℓ. Applying a Chernoff bound we have

Pr

[
q−1∑
ℓ=1

I[Aj ∩ L ∩Rℓ = ∅] = 0

]
≤ Pr

[
q−1∑
ℓ=1

I[Aj ∩ L ∩Rℓ = ∅] <

(
1−

√
2

3

)
E

[
q−1∑
ℓ=1

I[Aj ∩ L ∩Rℓ]

]]

≤ exp

−
(√

2
3

)2
E
[∑q−1

ℓ=1 I[Aj ∩ L ∩Rℓ]
]

2


≤ exp

(− 2
3 (3 logm)

2

)
= exp(− logm) =

1

m
.

Putting this all together, we have that

Pr
[
E ijq
∣∣ biq /∈ L

]
≤ Pr [Aj ∩ L = ∅ | biq /∈ L] ≤ 1/m, (7)

which concludes the proof of Claim 2.

The proof of Claim 3 is deferred to Appendix B. This concludes the proof of Lemma 5.
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3.2 Round-Robin is SD-EFX: The proof of Lemma 2

We extend the analysis of Section 3.1 to get SD-EFX allocations for arbitrary m. Fix an arbitrary m and
let m = qn+ r for 1 ≤ r ≤ n and r, q ∈ N. Let Aq be the allocation after qn steps, and A be the complete
allocation of all qn + r items. Also, let Pt denote the pool of available items at “time” t, i.e., after t picks
have been made (so, P0 =M and Pm = ∅). Notice that

Pr [A is SD-EFX] ≥ Pr [A is SD-EFX and Aq is SD-EF]

= Pr [A is SD-EFX | Aq is SD-EF] · Pr [Aq is SD-EF] .

We show that Pr [A is SD-EFX | Aq is SD-EF] = 1 and Pr [Aq is SD-EF] ≥ 1−O
(

n2

m

)
.

We begin with the former. Fix arbitrary samples π1, . . . , πn such that Aq is SD-EF. We want to show that
A is SD-EFX. Consider agents i, j ∈ N . We show that either Aq

i ⪰sd
πi

Aj or, for all g ∈ Aj , A
q
i ⪰sd

πi
Aj \ {g}.

Since Aq
i ⊆ Ai, the same holds for Ai. It must be that either Aj = Aq

j or Aj = Aq
j ∪ {g} for some

g ∈ Pqn. If Aj = Aq
j it follows that Aq

i ⪰ Aq
j = Aj , since Aq is SD-EF by assumption. Suppose instead that

Aj = Aq
j ∪ {g∗} for some g∗ ∈ Pqn. The key observation is that g∗ ∈ Pqn, implying it was available (and

not selected) at every time step that i picked an item, so g′ ≻ g∗ for all g′ ∈ Ai. Note that, this doesn’t
immediately imply the EFX condition, since g∗ might not be the worst item (from i’s perspective) that j
owns. Let bik and bjk denote the k’th best item in Aq

i and Aq
j according to πi, respectively. By assumption

bik ≻i bjk for all k. Let b′jk be the k’th best item in Aj \ {g}. If g∗ = g then Aq
i ⪰sd

πi
Aj \ {g∗} = Aq

j .
Otherwise, if g∗ ̸= g, suppose g∗ = b′jℓ for some ℓ. Notice that for all k < ℓ, b′jk = bjk so bik ≻i b

′
jk. For

k ≥ ℓ, we have that bik ≻i g
∗ = bjℓ ⪰i b

′
jk. Hence, Aq

j ⪰sd
πi

Aj \ {g∗}, as needed.
Next, we show Pr [Aq is SD-EF] ≥ 1 − O

(
n2

m

)
. Specifically, we will show that the probability that Aq

is not SD-EF is upper bounded by 2066n2

m . We assume that m ≥ 2000n2 (otherwise the bound is trivial),
which implies that qn ≥ m/2. The analysis is very similar to showing Round Robin is SD-EF when m = qn,
so we simply describe which changes need to be made. Let bijk denote the k’th best item according to πi

in the bundle Aq
j ; for ease of notation we write bjk when i is clear from the context. Let E ijk be the that

bjk ≻i bik, and let E ij =
⋃q

k=1 E
ij
k be Aq

i ̸⪰sd
πi

Aq
j . That is, E ij , bijk, and E

ij
k are defined analogously to the

proof of Lemma 1, but with respect to Aq instead of A. Let Rℓ be the set of items picked between agent i’s
ℓ’th and (ℓ+ 1)’th pick, and Rq = Pqn be the set of items remaining items after the allocations in Aq.

On a high level, our goal is again to upper bound by getting bounds on Pr
[
E ijk
]
and

∑
i∈N Pr

[⋃
j:j<i E ijq

]
,

similarly to Lemmas 4 and 5. Using very similar bounds we have

Pr

⋃
i,j

E ij
 ≤∑

i∈N

q∑
k=1

Pr

 ⋃
j:j<i

E ijk


≤
∑
i∈N

q−1∑
k=1

Pr

⋃
j

E ijk

+ Pr

⋃
j

E ijq


≤ n

q−1∑
k=1

Pr

⋃
j

E ijk

+
∑
i∈N

Pr

⋃
j

E ijq


≤ 8n

q−1∑
k=1

1(
q
k

) +∑
i∈N

Pr

⋃
j

E ijq

 .

Since qn ≥ m/2 we can, similarly to Inequality (2), bound the first term by 64n2

m . For the second

term, one complication is that our bound on Pr
[⋃

j E ijq
]
needs to take care of the n = 2 case, separately.
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This is caused because the analog of Lemma 5 is not a bound of n
m + 2

(
8n logm
m1−1/n

)n+1−i

, but a bound of

n
m + 2

(
10n logm
m1−1/n

)n+1−i+r

, which is too weak for n = 2. We explain these differences, and how to address

them, in Appendix B.1.

3.3 Round-Robin is asymptotically optimal: The proof of Lemma 3

Fix n and m with m ≥ 2n. We prove that SD-EFX allocations do not exist with probability at least

min
(

n2

8m , 1
8

)
. To do so, we first show that if two agents have the same favorite item, no SD-EFX allocation

exists. We then show using standard birthday paradox bounds that the probability two agents have the

same favorite item is at least min
(

n2

8m , 1
8

)
.

For the former, suppose two agents have the same favorite item g with m ≥ 2n. We show that no SD-EFX
allocation exists. Fix an allocation A. First note that if A is not balanced, i.e., ||Ai| − |Aj || ≤ 1, then it
cannot be SD-EFX. Indeed, if |Ai| − |Aj | > 1, then for any g ∈ Ai, Ai \ {g} > |Aj | so it cannot be the case
that |Aj | ⪰sd

πj
Ai \ {g}. Next, suppose A is balanced. Since the two agents have the same favorite item,

there is some agent i whose favorite good is g and who did not receive g. Further, there is an agent j such
that g ∈ Aj , and since A is balanced, |Aj | ≥ 2. Therefore, there is some g′ ̸= g such that g′ ∈ Aj . However,
since g ∈ Aj \ {g′}, Ai ̸⪰sd

πi
Aj \ {g′}, so A is not SD-EFX.

Next, we show that the probability two agents have the same favorite item is at least min
(

n2

8m , 1
8

)
. Notice

that each agent’s favorite item is a uniformly selected item, independent of other agents. The probability that
two agents have the same first item is known from the collision analysis of Hash functions. Indeed, it is known

as long as n ≤
√
2m, the probability that two agents have the same first item is at least n(n−1)

4m [KL20]. In

other words, as long as m ≥ n2/2, two agents have the same first item with probability at least n(n−1)
4m ≥ n2

8m .
For m < n2/2, notice that the probability of a collision is decreasing in m. Hence, the probability of a
collision is at least the probability with n agents and m′ = ⌈n2/2⌉ ≤ n2 items. The previous result says that

this probability is then at least n2

8m′ ≥ 1
8 .

3.4 Give-Away Round Robin

As we’ve shown, Round-Robin is asymptotically optimal as n grows. However, while it is often reasonable
to assume that the number of items is large, it is often less reasonable to assume the same for the number of
agents. When n is a constant, no SD-EF allocations exist with probability Ωn(1/m). Although Round-Robin
finds SD-EF allocations with probability 1 − On(1/m), when m is divisible by n, Theorem 1 only gives an
upper bound of 1 − On(

logm
m1−1/n ) on the probability of finding such an allocation. A careful analysis shows

this is relatively tight: with probability Ωn(
1

m1−1/n ), the last agent will be left with their worst item, which
implies the resulting allocation cannot be SD-EF. For example, with n = 2, Round-Robin will not find an
SD-EF allocation with probability Ω(1/

√
m), while the lower bound only implies such allocations don’t exist

with probability Ω(1/m). This motivates an alternative algorithm that closes this gap. To avoid receiving
a truly bad item, agents first give away a bad item to each of the other agents, then proceeds with regular
Round-Robin on the remaining items. We formalize this in Algorithm 2, and prove it achieves optimal (up
to log factors) probability of finding an SD-EF allocation.

Theorem 2. Let π1, . . . , πn be sampled independently and uniformly at random. When m = qn, q ∈ N,

Pr [Give-Away Round Robin is SD-EF] ≥ 1− Õn

(
1

m

)
.

Proof. The proof follows a very similar structure to the proof of Theorem 1, though with more intricate
analysis in various places. Fix m = qn for an integer q. We will show the probability that Give-Away Round
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Algorithm 2: Give-Away Round Robin

Input: Valuations v1, . . . , vn which are order consistent with respect to π1, . . . , πn.
Output: An allocation A = (A1, A2, . . . , An).

Set Ai ← ∅ for all agents i ∈ N
Set P ←M
Phase 1: Give-away (n(n− 1) items)
for i = 1, . . . , n do

for j = 1, . . . , n, j ̸= i do
Let g ∈ P be the unallocated item with the highest index in πi.
Set Aj ← Aj ∪ {g}
Set P ← P \ {g}

Phase 2: Round-Robin
for i = 1, . . . , n, 1, . . . , n, 1, . . . do

Let g ∈ P be the unallocated item with the lowest index in πi.
Set Ai ← Ai ∪ {g}
Set P ← P \ {g}

return (A1, A2, . . . , An)

Robin is not SD-EF is upper bounded by

67584n3 log2 m+ 25216n4 logm+ 2354n5 + 128n2 logm+ 24n3 + 3n2 + n

m
.

Throughout, we will assume that m is lower bounded by the numerator, as otherwise, the bound is trivial.
For i ̸= j, we again let E ij be the event that Ai ̸⪰sd

πi
Aj . Unlike in Round Robin, the give-away phase

makes it possible that lower-indexed agents envy higher-indexed agents, so E ij is defined for all agents i ̸= j.

We again wish to upper bound Pr
[⋃

i∈N
⋃

j:j ̸=i E ij
]
. We reuse the notation g ≻i g

′ to denote preferences

under πi, and bijk for i’s k’th favorite item in Aj . We decompose E ij into
⋃q

k=1 E
ij
k as before, where E ijk is

the event that bjk ≻i bik. Using a union bound, we wish to upper bound

∑
i∈N

Pr

⋃
k≤q

⋃
j:j ̸=i

E ijk

 .

We let γij for i ̸= j be the item given from i to j in the give-away phase. We use P̃t for 0 ≤ t ≤ n(n− 1)
to denote the pool of available items after t giveaway steps. We then let Pt be the pool after t Round Robin
steps (so P̃0 =M, P̃n(n−1) = P0, and Pm−n(n−1) = ∅). We let gt be the item taken at the t’th step of Round
Robin. Therefore, Aj = {γij | i ̸= j} ∪ {gt | t ≡ j mod n}.

We fix an agent i and condition on πi. The random process of selecting items is now similar to in Round
Robin. For times t when γij is given, γij is the worst remaining item from P̃t−1, and for γi′j with i′ ̸= i

it is a uniformly selected item from P̃t−1 (from agent i’s perspective). During the Round Robin phase,
for gt with t ≡ i mod n, gt is the best available item from Pt−1, and when t ̸≡ i mod n, gt is a uniformly
selected item from Pt−1. For the Round Robin phase, we again consider the sets Rℓ of items picked in
the Round Robin phase between i’s ℓ’th and (ℓ + 1)’th pick, so R0 = {g1, . . . , gi−1}, for 1 ≤ ℓ ≤ q − n,
Rℓ =

{
gn(ℓ−1)+i+1, . . . , gℓn+i−1

}
, and Rq =

{
gn(q−1)+i+1, . . . , gm

}
. As with Round Robin, each item in Rℓ

is picked sequentially and uniformly at random from the remaining items. This allows us to analyze an
equivalent two-step process wherein Rℓ is first selected uniformly at random from Pt, after which each item
in Rℓ is matched to a (non-i) agent that is picked in the corresponding timesteps uniformly at random.
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We now break down
⋃

k≤q via a union bound into different groupings of k.

∑
i∈N

Pr

⋃
k≤q

⋃
j:j ̸=i

E ijk

 =
∑
i∈N

(
Pr

 ⋃
k:k<32 logm+4n

⋃
j:j ̸=i

E ijk

+ Pr

 ⋃
k:32 logm+4n≤k≤q−32 logm−5n

⋃
j:j ̸=i

E ijk


+ Pr

 ⋃
k:q−32 logm−5n<k≤q−1

⋃
j:j ̸=i

E ijk

+ Pr

 ⋃
k:k=q

⋃
j:j ̸=i

E ijk

).
Fix an agent i. The following lemmas handle each of the summands individually.

Lemma 6. Pr
[⋃

k:k<32 logm+4n

⋃
j:j ̸=i E

ij
k

]
≤ 2048n2 log2 m+640n3 logm+50n4

m .

Lemma 7. Pr
[⋃

k:32 logm+4n≤k≤q−32 logm−5n

⋃
j:j ̸=i E

ij
k

]
≤ 1

m .

Lemma 8. Pr
[⋃

k:q−32 logm−5n<k≤q−1

⋃
j:j ̸=i E

ij
k

]
≤ 65536n2 log2 m+24576n3 logm+2304n4+128n logm+24n2+n

m .

Lemma 9. Pr
[⋃

k:k=q

⋃
j:j ̸=i E

ij
k

]
≤ 2n

m .

Together, these imply that

∑
i∈N

Pr

⋃
k≤q

⋃
j:j ̸=i

E ijk


≤ n

(
67584n2 log2 m+ 25216n3 logm+ 2354n4 + 128n logm+ 24n2 + 3n+ 1

m

)
≤ 67584n3 log2 m+ 25216n4 logm+ 2354n5 + 128n2 logm+ 24n3 + 3n2 + n

m
∈ Õn

(
1

m

)
.

We prove Lemmas 6 to 9 in Appendix B.2.

4 Arbitrary Valuations

In this section, we consider the case of two agents having arbitrary set functions as their valuation functions.
Such valuation functions need not be monotone and are general enough to capture all well-studied settings,
including the fair division of goods, chores, or mixed manna under additive, subadditive, or superadditive
preferences, etc. Our main result is that EF allocations exist with probability at least 1− 1

m/2+1 when the

number of items, m, is even. When the number of items is odd, valuation functions exist for which EF
allocations cannot exist. For example, consider the case of two identical, additive agents whose value for
every single item is equal to 1 (where random renaming does not change anything). For such a valuation
function, if m is odd, then envy-free allocations do not exist. And, if m is even, every envy-free allocation
is, in fact, balanced, i.e., each agent receives a bundle of the same size m/2. In Theorem 5, we show that
balanced EF allocations exist with high probability for arbitrary valuation functions when m is even. As
we’ll see later in this section, looking for a balanced EF allocation will allow us to reduce our problem to a
question about the size of automorphisms in k-uniform hypergraphs. First, in the following observation, we
show that, without loss of generality, we may assume that each agent has a strict preference between a set
and its complement.

Observation 1. If any agent has a valuation function v : 2M → R≥0 such that, for some S ⊆M, it holds
that v(S) = v(S), then an EF allocation exists with probability 1.
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Proof. Without loss of generality, let v be the valuation function of agent 1. For any permutation π1,
agent 1 is indifferent between the bundles π1(S) and π1(S̄), therefore, either the allocation (π1(S), π1(S̄)) or
(π1(S̄), π1(S)) is envy-free.

We henceforth assume that (i) the number of items, m, is even; and (ii) the valuation function vi of
each agent i is such that, for every subset S with |S| = m/2, vi(S) ̸= vi(S̄). Our proof is based on two
key insights. First, (strict) preferences for bundles of size m/2 can be conveniently represented as uniform
hypergraphs. Second, we can formulate questions about the probability of an envy-free allocation existing
as questions about the number of hypergraph automorphisms.

4.1 Representing preferences as hypergraphs

We use the following hypergraph representation of arbitrary set function preferences: Given a valuation
function v such that v(S) ̸= v(S̄) for all S ⊆ M, |S| = m/2, define the hypergraph Hv = (M, Ev) where
the set of edges Ev := {S ⊂ M : |S| = m/2 & v(S) > v(S)}. Hv is a m/2-uniform hypergraph11

with m vertices, one for each item, and
(

m
m/2

)
/2 edges, one for each set of size m/2 that is preferred to its

complement.
Given a hypergraph H = (M, E) and a permutation π : M → M, we will use π(H) = (M, Eπ) to

denote the hypergraph obtained by permuting the set of vertices by π, i.e., Eπ = {π(S) : S ∈ E}. As an
example, consider the valuations and corresponding hypergraphs shown in Figure 1. Each preferred bundle
of size 2 corresponds to an edge in the hypergraph, representing the corresponding agent’s preferences. Since
H1 ̸= H2 there exists an envy-free allocation, in this case ({1, 3}, {2, 4}).

S S̄

1, 2 3, 4

1, 3 2, 4

1, 4 2, 3

H1 :

4

1 2

3

H2 :

4

1 2

3

π(H1) :

4

1 2

3

Figure 1: Example with m = 4 items and n = 2 agents where the hypergraphs corresponding to the
valuations of agent 1, 2 are H1, H2 respectively. The leftmost table shows all bundles of size m/2 = 2 and
their complements; the preferred bundles of agent 1 (2) are boxed (underlined, respectively). The rightmost
figure shows the hypergraph π(H1) obtained by renaming H1 using permutation π = (2, 1, 3, 4).

The next lemma formalizes the relationship between envy-free allocations and the hypergraph represen-
tation of valuations.

Lemma 10. Let v1, v2 : 2M → R≥0 be two valuation functions with corresponding hypergraphs Hv1 =
(M, Ev1) and Hv2 = (M, Ev2), respectively. If the hypergraphs are not identical, i.e. Hv1 ̸= Hv2 , then an
envy-free allocation exists.

Proof. Since Hv1 ̸= Hv2 , there must exist an edge S ⊂ M, |S| = m/2, present in one of the hypergraphs
that is not present in both. If S ∈ Ev1 and S /∈ Ev2 , then the allocation A = (S, S) is envy-free, since
v1(S) > v1(S) and v2(S) < v2(S). Similarly, if S /∈ Ev1 and S ∈ Ev2 , then the allocation B = (S, S) is
envy-free. Thus, envy-free allocations exist when Hv1 ̸= Hv2 .

4.2 Relating envy-freeness to hypergraph isomorphism

When agent i with valuation function vi and corresponding hypergraph Hvi renames the items by applying
permutation π, then the hypergraph Hvπ

i corresponding to the new valuation function vπ is Hvπ
i = π(Hvi).

That is, permuting the names of the items amounts to permuting the vertices of the hypergraph. This follows

11A hypergraph H = (V,E) is k-uniform when |e| = k for all e ∈ E.
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directly from the following sequence of equivalences: subset S is present as an edge in Hvπ
i iff vπi (S) > vπi (S)

iff vi(π
−1(S)) > vi(π

−1(S)) (from the definition of vπi ) iff π−1(S) is present as an edge in Hvi iff S is present
as an edge in π(Hvi).

In our setting, agents 1 and 2, with valuation functions v1 and v2, apply permutations π1 and π2 to rename
the items. As per Lemma 10, an envy-free allocation will exist whenever π1(H

v1) ̸= π2(H
v2). Since applying

permutations π1, π2 does not change the structure of the hypergraph, π1(H
v1) = π2(H

v2) is only possible
when Hv1 and Hv2 are isomorphic (and therefore, envy-free allocations trivially exist with probability 1
whenever Hv1 and Hv2 are non-isomorphic).

Accordingly, we assume that Hv1 and Hv2 are isomorphic. Without loss of generality, we also assume
that π1 is the identity permutation. To see why, observe that for uniformly random π1, π2, the composition
π−1
1 π2 is also uniformly random. We view agent 2’s renaming of the items as the permutation group12 acting

on the set of all hypergraphs on m vertices, denoted Hm = {H = (V,E) : |V | = m} and recall relevant
group theoretic concepts. The orbit of a hypergraph H is an equivalence class defined as O(H) = {G ∈ Hm :
∃ permutation π,G = π(H)}. The permutation group partitions Hm into ℓ orbits O1,O2, . . . ,Oℓ, where any
two hypergraphs are isomorphic if and only if they are in the same orbit. In Figure 1, H1 and H2 are not in
the same orbit. Despite H1 and π(H1) being isomorphic and in the same orbit, these valuations still permit
an envy-free allocation.

Let O be the orbit containing both Hv1 and Hv2 . Starting from H ∈ O and applying a random
permutation π, the distribution of the permuted hypergraph π(H) is also uniform over O. To upper bound
the probability of the non-existence of EF allocations, it is sufficient to lower bound all orbit sizes. Specifically,
Prπ2

[Hv1 = π2(H
v2)] = 1/|O|. The orbit-stabilizer theorem [DF04] relates a graph’s orbit size to the number

of its stabilizers.

Theorem 3 (Orbit-stabilizer theorem [DF04]). If a finite group Π acts on a set X, then for every x ∈ X,
|Π| = |Orb(x)| · | Stab(x)|, where Stab(x) = {π ∈ Π : π · x = x}.

In our context Π is the permutation group and X = Hm. A permutation π is an automorphism (and
also a stabilizer) of hypergraph H iff π(H) = H. Let aut(H) := { permutation π : π(H) = H} be the set
of all automorphisms. Now m! = |O(H)| · | aut(H)| by Theorem 3. We now upper bound the number of
automorphisms of a hypergraph H.

Theorem 4. For any non-empty and non-complete k-uniform hypergraph H on m vertices, the number of
automorphisms of H satisfies | aut(H)| ≤ m!

m−k+1 .

Proof. We prove this by induction on k. Our induction hypothesis is as follows: for a given k, the number
of automorphisms of a non-empty and non-complete k-uniform hypergraph on m vertices is at most m!

m−k+1 .
Base Case: k = 1. Fix an arbitrary m. A 1-uniform hypergraph H = (M, E) is simply a selection of some
ℓ singleton sets of vertices: for all S ∈ E, we have |S| = 1. Since H is non-empty and non-complete, we have
0 < ℓ < m. Note that, any automorphism π of H must map any vertex that forms (resp. does not form)
an edge to another vertex that forms (resp. does not form) an edge. Since there are ℓ vertices that form an
edge and m− ℓ vertices that don’t form an edge, we have

| aut(H)| ≤ ℓ!(m− ℓ)! =
m!(
m
ℓ

) ≤ m!

m
=

m!

m− k + 1
.

Induction Step: Now, assume that the induction hypothesis is true for k. Fix an arbitrary m and let
H = (M, E) be a non-empty, non-complete (k + 1)-uniform hypergraph on m vertices. For any vertex
i ∈ M, define Hi to be the k-uniform hypergraph induced by the vertex i. That is, Hi = (Vi, Ei) where
Vi =M\ {i} and Ei = {e \ {i} : e ∈ E, i ∈ e}. We consider two cases, based on whether the hypergraphs
{Hi}i∈M are all isomorphic to each other or not.

First, suppose the hypergraphs {Hi}i∈M are not isomorphic to each other. Define I1 = {j ∈ M :
∃ permutation π satisfying π(Hj) = H1} as the set of vertices whose corresponding hypergraph is isomorphic

12Recall that the elements of the permutation group are all permutations π : M → M and the group operation which
combines two group elements is the function composition.
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to H1 and let ℓ = |I1|. 1 ∈ I1, therefore ℓ > 0. Since not all Hi’s are isomorphic to each other we have
I1 ⊊M, and thus ℓ < m. In any automorphism π, every vertex in I1 must be mapped to a vertex in I1.
Hence, by the same argument as in the base case, the total number of automorphisms of H is at most

| aut(H)| ≤ ℓ!(m− ℓ)! ≤ m!

m
≤ m!

m− k + 1
.

Next, suppose the hypergraphs {Hi}i∈M are isomorphic to each other. Because H is non-empty and
non-complete and k ≥ 2, each Hi cannot be empty or complete. That is, the hypergraphs {Hi}i∈M are
non-empty, non-complete, k-uniform, and have m − 1 vertices. Therefore, as per the induction hypothesis,

we have | aut(Hj)| ≤ (m−1)!
(m−1)−k+1 for all j ∈ M. Finally, to count the total number of automorphisms of H,

notice that there are exactly m ways to map vertex 1 to another vertex j ∈M. However, once this mapping
is fixed, the hypergraph induced by the remaining vertices M \ {j}, must get mapped to the hypergraph
H1. Hence, the total number of automorphisms of H is at most

| aut(H)| ≤ m · (m− 1)!

(m− 1)− k + 1
=

m!

m− (k + 1) + 1
,

giving us the desired inequality. This completes the induction step.

We combine the previous observations and Theorem 4 to obtain the main result of this section.

Theorem 5. For n = 2 agents, having arbitrary valuation functions, envy-free allocations exist with a
probability of at least 1− 1

m/2+1 when m is even. This probability is tight up to constants: for n = 2 agents,

there exist additive valuations such that an envy-free allocation does not exist with probability 1/m.

Proof. From Observation 1 and Lemma 10, we only need to consider instances where agents have valuation
functions v1 and v2 such that (i) Hv1 is isomorphic to Hv2 , and (ii) for all bundles S ⊆M with |S| = m/2
we have v(S) ̸= v(S); if either (i) or (ii) is not satisfied, EF allocations will exist with probability 1. We
can therefore represent the valuation functions by the corresponding hypergraphs Hv1 and Hv2 . Since Hv1

is isomorphic to Hv2 , instead of considering renaming Hv1 and Hv2 by random permutations π̂1 and π̂2

respectively, we can simply consider v1 as fixed and permuting Hv2 by π = π̂−1
1 π̂2.

By Lemma 10, envy-free allocations do not exist with probability at most Prπ[H
v1 = π(Hv2)]. If both

hypergraphs belong to the orbit O, i.e., Hv1 , Hv2 ∈ O, then Prπ[H
v1 = π(Hv2)] = 1

|O| =
| aut(Hv1 )|

m! ; the last

inequality follows from the orbit-stabilizer theorem [DF04]. As the final step, we can use Theorem 4 with
k = m/2 to obtain the bound

Pr
π
[Hv1 = π(Hv2)] =

| aut(Hv1)|
m!

≤ 1

m− (m/2) + 1
=

1

m/2 + 1
.

Therefore, envy-free allocations exist with a probability of at least 1− 1
m/2+1 .

To conclude the proof of the theorem, we show an upper bound on the probability of existence. Consider
the case of two identical valuation functions that assign a positive value only to a single item (the same item
for both agents). Any set that contains this item is preferred to its complement. For such an instance, with
probability 1/m (over item renaming), this single item liked by both of the agents will be the same, and
envy-free allocations won’t exist.

5 Conclusion

In this paper, we study the existence of envy-free allocations beyond the case of additive valuations. We
introduce a simple model to study this question: starting from a worst-case valuation function, randomly
rename the items. We show that, in this model, if valuations are order-consistent (a valuation class general
enough to include additive, unit-demand, budget additive, single-minded, etc), even sd-envy-free allocations
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exist with high probability. In fact, a simple Round-Robin process will output such an allocation with
high probability. Our bound on the probability is asymptotically tight, but we can improve upon it for
the important case of a constant number of agents, using a variation of Round-Robin, that might be of
independent interest. For arbitrary valuations, we show a positive result for the case of n = 2 agents. Our
proof reduces the question about the existence of envy-free allocations to a question about the number of
automorphisms in a uniform hypergraph.

An important problem we leave open is whether envy-free allocations exist for general valuation functions
for n > 2 agents. Our approach of viewing valuations as hypergraphs immediately fails since now an allocation
is not just a set and its complement. Interestingly, the existence of envy-free allocations in our model does
not seem to become any easier, even if one is willing to make fairly common structural assumptions on the
valuation functions. For example, one might attempt to prove Theorem 5 for, e.g., monotone submodular
functions (where strong concentration results are readily available [Von10]), hoping to get a proof for n = 2
that can extend to more agents. In Section 4 we show that corresponding to a valuation function, we can
construct a unique hypergraph; we complement this in Appendix A by showing that for any H we can
construct a monotone submodular function v such that Hv = H. This implies that, in a sense, the general
existence of balanced EF allocations for two agents reduces to the existence of EF allocations for monotone
submodular valuation functions.
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A Preference Hypergraphs and Submodular valuations

We conclude by showing that the existence of balanced envy-free allocations for arbitrary valuation functions
can, in a sense, be reduced to the class of submodular valuation functions.

Proposition 1. For any valuation function v and corresponding hypergraph Hv = (M, E) such that, for all
S ⊆ M of size m/2 exactly one of S or S is in E, there exists a monotone, submodular valuation function
v′ so that Hv = Hv′

.

Proof. Construct v′ as follows:

v′(S) =


|S| if |S| < m/2

m/2− 1/2 if |S| = m/2 and S ∈ E

m/2− 1/4 if |S| = m/2 and S ∈ E

m/2 if |S| > m/2.

It is straightforward to verify that v′ is submodular and that Hv′
= Hv.
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B Omitted proofs

Proof of Claim 1. Using Gautchi’s inequality we have that

2

n
· Γ(k + 1/n)Γ(q − k + 1/n)

Γ(q + 1/n)
=

2

n
· Γ(k + 1)Γ(q − k + 1)

Γ(q + 1)
· Γ(k + 1/n)

Γ(k + 1)
· Γ(q − k + 1/n)

Γ(q − k + 1)
· Γ(q + 1)

Γ(q + 1/n)

≤ 2

n
· k!(q − k)!

q!

1

k1−1/n

1

(q − k)1−1/n
(q + 1)1−1/n

=
2

n

1(
q
k

) ( q + 1

k(q − k)

)1−1/n

<
2

n

1(
q
k

) ( 2q

q/2

)1−1/n

≤ 2

n

1(
q
k

)41−1/n

≤ 8

n
· 1(

q
k

)
where the third inequality holds because q + 1 ≤ 2q, both k ≥ 1, (q − k) ≥ 1, and at least one k and (q − k)
is ≥ q/2.

Proof of Claim 3. Recall that biq = gn(q−1)+i. Further, gn(q−1)+i ∈ L requires that Pn(q−1)+i−1 ⊆ L,
otherwise an item g /∈ L, which i prefers to any item in L, is available (and i would have preferred to choose
it). Since |Pn(q−1)+i−1| = m− (n(q − 1) + i− 1) = n− i+ 1, we have

Pr [biq ∈ L] = Pr
[
Pn(q−1)+i−1 ⊆ L

]
=

∑
S∈( L

n+1−i)

Pr
[
Pn(q−1)−i+1 = S

]
.

Fixing an arbitrary S ∈
(

L
n+1−i

)
we have

Pr
[
Pn(q−1)−i+1 = S

]
= Pr

n(q−1)+i−1⋂
t=1

{gt /∈ S}


=

n(q−1)+i−1∏
t=1

Pr

[
gt /∈ S

∣∣∣∣∣
t−1⋂
t′=1

gt′ /∈ S

]

=

n(q−1)+i−1∏
t=1

Pr [gt /∈ S |S ⊆ Pt−1] .

For timesteps t where i made a pick, i.e., t ≡ i (mod n), Pr [gt /∈ S |S ⊆ Pt−1] is hard to compute, as it
depends on exactly which items are available. In these cases, we use the trivial upper bound of 1. For other

timesteps t, gt is a uniformly random item from Pt−1, so Pr [gt /∈ S |S ⊆ Pt−1] = 1− |S|
|Pt−1| = 1− n+1−i

m+1−t =
m+1−t−(n+1−i)

m+1−t . It follows that

Pr
[
Pn(q−1)−i+1 = S

]
≤

n(q−1)+i−1∏
t=1:t̸≡i mod n

m+ 1− t− (n+ 1− i)

m+ 1− t
.

To ease notation, we perform a change of variables to t′ = n(q− 1) + i− t, i.e., we reverse the product. The
condition t ̸≡ i (mod n) becomes t′ ̸≡ 0 (mod n), and we have t′ = n(q− 1)+ i− t = m+1− t− (n+1− i).
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Therefore, we can simplify to

n(q−1)+i−1∏
t′=1:t′ ̸≡0( mod n)

t′

t′ + (n+ 1− i)
=

∏n(q−1)+i−1
t′=1

t′

t′+(n+1−i)∏n(q−1)+i−1
t′=1:t′≡0( mod n)

t′

t′+(n+1−i)

=

n(q−1)+i−1∏
t′=1

t′

t′ + (n+ 1− i)
·

n(q−1)+i−1∏
t′=1:t′≡0( mod n)

t′ + (n+ 1− i)

t′
.

Observing that n(q − 1) + i− 1 + (n+ 1− i) = qn = m, the first product is exactly equal to

(m− (n+ 1− i))!(n+ 1− i)!

m!
=

1(
m

n+1−i

) ≤ 1

(m− (n+ 1− i))n+1−i
≤ 1

(m− n)n+1−i
≤(m≥2n)

(
2

m

)n+1−i

.

The second product simplifies, as we only need to consider values t′ = ℓn for 1 ≤ ℓ ≤ q − 1. Hence,

n(q−1)+i−1∏
t′=1:t′=0 mod n

t′ + (n+ 1− i)

t′
=

q−1∏
ℓ=1

ℓn+ (n+ 1− i)

ℓn
=

q−1∏
ℓ=1

ℓ+ n+1−i
n

ℓ
=

(1 + n+1−i
n )q−1

(q − 1)!
,

where the notation (x)r represents the rising factorial (x)r = x(x + 1) · · · (x + r − 1). We use the fact that

(x)r = Γ(x+r)
Γ(x) to get that the above is equal to,

Γ(q + n+1−i
n )

Γ(1 + n+1−i
n )Γ(q)

.

Similarly to Claim 1, using the fact that the Gamma function is lower bounded by 1/2 and Gautchi’s
inequality [Gau59], along with the assumption that m ≥ 2n, the above is at most

2Γ(q + n+1−i
n )

Γ(q)
≤ 2

(
q +

n+ 1− i

n

)n+1−i
n

≤ 2 (q + 1)
n+1−i

n ≤ 2m
n+1−i

n = 2(m1/n)n+1−i.

Combining with the previous bounds, we obtain for any S ∈
(

L
n+1−i

)
that, Pr

[
Pn(q−1)−i+1 = S

]
≤
(

2
m

)n+1−i·
2(m1/n)n+1−i = 2

(
2

m1−1/n

)n+1−i
. The number of possible choices of S is(
|L|

n+ 1− i

)
≤ |L|n+1−i ≤ (4n logm)n+1−i. (8)

Union bounding over all of these choices, we get that

Pr [biq ∈ L] = Pr
[
Pn(q−1)−i+1 ⊆ L

]
≤ 2

(
8n logm

m1−1/n

)n+1−i

,

which concludes the proof of Claim 3.

B.1 Missing details from the proof of Lemma 2

Here, we flesh out the missing details from the proof of Lemma 2.

For k < q, the proof of Lemma 4 goes through almost identically, to give us Pr
[
E ijk
]
≤ 8

(qk)
. The only

difference is that the equality in m − ((ℓ − 1)n + j − 1) = (q − ℓ)n + n − j + 1) of Equation (3) becomes a
weak inequality; the inequality is in the right direction for the same conclusion to hold.
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For k = q, the proof of Lemma 5, the analysis is very similar, even though more care is needed. To ensure
that there are at least 3 logm items remaining when lower bounding the expectation in Equation (6), since
|R0|+ |Rq| is only upper bounded by (n− 1)+ r ≤ 2n− 1, we slightly change L, which is now defined as the
bottom ⌈3n logm⌉+2n−1 items. It follows that |L| ≤ 5n logm. A second change is in the proof of Claim 3.
|Pn(q−1)+i−1|, the number of items remaining when i makes their q’th pick, is now n− i+1+r. The analysis
continues to go through by replacing occurrences of n− i+ 1 with n− i+ 1+ r. In the change of variables,
we have t′ = n(q − 1) + i− t = m+ 1− t− (n+ 1− i+ r). This means that Inequality (8) becomes(

|L|
n+ 1− i+ r

)
≤ |L|n+1−i+r ≤ (5n logm)n+1−i+r,

and Inequality (5) becomes

Pr

 ⋃
j:j<i

E ijq

 ≤ n

m
+ 2

(
10n logm

m1−1/n

)n+1−i+r

. (9)

For n = 2, we will need a bound that is even stronger than (9). When there are two agents the only envy
event we need to consider is E21q . We claim that we need only include i’s worst 1 + r ≤ 3 items in L to get

Pr
[
E21q

∣∣ b2q /∈ L
]
= 0. Indeed, suppose b2q /∈ L, so b2q is not one of the 3 worst items according to π2. Since

|Rq| ≤ 2 and L∩Aq
2 = ∅, it must be that Aq

1 ∩L ̸= ∅. We conclude b1q ∈ L, so b2q ≻2 b1q and event E21q does
not occur. Therefore, when n = 2,

∑
i∈N

Pr

 ⋃
j:j<i

E ijq

 = Pr
[
E21q
]
≤ 2

(
3

m1−1/n

)n+1−i+r

≤ 2

(
2n

m1/2

)1+r

(10)

We are now ready to upper bound the probability that Aq is not SD-EF.

Pr

⋃
i,j

E ij
 ≤∑

i∈N

q∑
k=1

Pr
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j:j<i

E ijk


≤
∑
i∈N

q−1∑
k=1

Pr

⋃
j

E ijk

+ Pr

⋃
j

E ijq


≤ n

q−1∑
k=1

Pr

⋃
j

E ijk

+
∑
i∈N

Pr

⋃
j

E ijq


≤ 8n

q−1∑
k=1

1(
q
k

) +∑
i∈N

Pr

⋃
j

E ijq

 .

Since qn ≥ m/2 we can refine Inequality (2) to get
∑q−1

k=1
1

(qk)
≤ 4

q ≤
8n
m , so the first term is at most 64n2

m .

When n = 2, the second term is bounded by 2
(

2n
m1/2

)1+r
by (10). By our assumption m ≥ 2000n2 and

r ≥ 1, so 2n
m1/2 ≤ 1 and

2

(
2n

m1/2

)1+r

≤ 2

(
2n

m1/2

)1+1

=
8n2

m
,

from which it follows that Pr
[⋃

i,j E ij
]
≤ 64n2

m + 8n2

m = 72n2

m ≤ 2066n2

m .

Next, we show the same bound for n ≥ 3. Here

Pr

⋃
j

E ijq

 ≤ n2

m
+ 2

∑
i∈N

(
10n logm

m1−1/n

)n+1−i+r
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≤ n2

m
+ 2

∞∑
i=1

(
10n logm

m1−1/n

)i+r

≤ n2

m
+ 2

∞∑
i=1

(
10n logm

m2/3

)i+r

.

We claim that
logm

m1/6
≤ 6

e
.

To see why, observe that the derivative of logm
m1/6 is 6−log(m)

6m(7/6))
the function is maximized over positive reals

exactly at m = e6, where it takes value 6
e . Substituting into the above,

Pr

⋃
j

E ijq

 ≤ n2

m
+ 2

∞∑
i=1

(
60n

em1/2

)i+r

.

Since (60/e)2 ≤ 500 and we are restricted to m ≥ 2000n2, 60n
em1/2 ≤

√
500
2000 = 1/2. Using the fact that r ≥ 1,

this infinite series is at most
n2

m
+ 4

(
60n

em1/2

)2

≤ 2001n2

m
.

Hence,

Pr

⋃
j

E ijq

 ≤ 2066n2

m
,

as needed.

B.2 Missing lemmas from Section 3.4

Proof of Lemma 6. Let T be the top ⌊32 logm+4n⌋ items according to πi. Notice that if T ⊆ Ai, bik ≻ bjk
for all k ≤ 32 logm+ 4n. More formally, this means that,

Pr

 ⋃
k:k<32 logm+4n

⋃
j:j ̸=i

E ijk

 ≤ Pr [T ⊈ Ai] ,

so we directly upper bound the latter. For T ⊈ Ai to occur, it must be the case that some other agent j
received an item in T before i made their (⌊32 logm+ 4n⌋)’th pick. Since we are assuming m ≥ 32 logm+
4n+ n2 ≥ |T |+ n2, i would never give away an item in T during the giveaway phase as a worse item must
be available. Hence, the only way that another agent receives an item in T is if are given it by a non-i
agent in the giveaway phase or they pick it in the Round Robin phase before time n(|T | − 1) + i ≤ n|T |.
From i’s perspective all of these items are chosen uniformly at random from the pool. There are at most
(n− 1)(|T |+ n) ≤ n|T |+ n2 ≤ 32n logm+ 5n2 such items. When they are taken, the pool is always of size

at least m − (32n logm + 5n2). Hence, each is selected with probability at most 32n logm+5n2

m−32n logm−5n2 . Since we

are assuming m ≥ 64n logm+ 10n2, this probability is at most 64n logm+10n2

m . Union bounding over the at
most 32n logm+ 5n2 choices of k, this implies that the total probability is at most

Pr

 ⋃
k:k<32 logm+4n

⋃
j:j ̸=i

E ijk

 ≤ (64n logm+ 10n2)(32n logm+ 5n2)

m

=
2048n2 log2 m+ 640n3 logm+ 50n4

m

25



Proof of Lemma 7. Here, we upper bound each Pr
[
E ijk
]
individually and union bound over the at most q

choices of k and n choices of j. Fix agent j ̸= i and k such that 32 logm+4n ≤ k ≤ q−32 logm−5n. We first
consider j < i and later show how to extend it to j > i. Notice that bik ⪰i g(k−1)n+i, i.e., i’s k’th favorite item
is at least as good as their k’th pick in the Round Robin phase (though it may be better if i was lucky during
the giveaway phase). Additionally, if bjk ≻i bik ⪰i g(k−1)n+i, this implies that Aj contains at least k items
strictly preferred to g(k−1)n+i. None of these could have been chosen after time (k−1)n+i in the Round Robin
phase as g(k−1)n+i was the best available item from P(k−1)n+i−1. Additionally, g(k−1)n+i ≻ γij (the item i

gave to j) as γij was the worst available item at a time when g(k−1)n+i was available. Hence, for E ijk to hold,

at least k of {γi′j | i′ ̸= i, j} ∪
{
gj , . . . , g(k−1)n+j

}
are preferred to g(k−1)n+i. Since | {γi′j | i′ ̸= i, j} | = n− 2,

this implies that |
{
ℓ
∣∣ g(ℓ−1)n+j ≻i g(k−1)n+i

}
| ≥ k − (n− 2). More formally, we have that

Pr
[
E ijk
]
≤ Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ≻i g(k−1)n+i] ≥ k − (n− 2)

]

As before, a necessary condition for g(ℓ−1)n+j ≻i g(k−1)n+i is g(ℓ−1)n+j ⪰i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 , hence,

Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ≻i g(k−1)n+i] ≥ k − (n− 2)

]
≤ Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ⪰i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≥ k − (n− 2)

]

= Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≤ n− 2

]
.

Now each of these indicators is an independent Bernoulli random variable. This means we can use a Chernoff
bound on the sum. To do so, we first bound the expectation of the sum. We have that

E

[
k∑

ℓ=1

I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ]

]
=

k∑
ℓ=1

Pr
[
g(ℓ−1)n+j ⪰̸i P

((k−ℓ)n+i−j)
(ℓ−1)n+j−1

]
=

k∑
ℓ=1

1− (k − ℓ)n+ i− j

|P(ℓ−1)n+j−1|

=

k∑
ℓ=1

1− (k − ℓ)n+ i− j

n(q − (n− 1))− ((ℓ− 1)n+ j − 1)

=

k∑
ℓ=1

1− (k − ℓ)n+ i− j

n(q − n− ℓ) + 1− j

=

k∑
ℓ=1

n(q − n− k) + 1− i

n(q − n− ℓ) + 1− j

≥
k∑

ℓ=1

n(q − n− k) + 1− i+ (i− 1)

n(q − n− ℓ) + 1− j + (i− 1)

=

k∑
ℓ=1

n(q − n− k)

n(q − n− ℓ) + i− j

≥
k∑

ℓ=1

n(q − n− k)

n(q − n− ℓ) + n

≥
k∑

ℓ=1

q − n− k

q − n− ℓ+ 1
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≥ k · q − n− k

q − n+ 1

≥ (q − n− k)k

q − n+ 1
+

(q − n− k)

q − n+ 1
− 1

=
(q − n− k)(k + 1)

q − n+ 1
− 1

≥ max(q − n− k, k + 1) ·min(q − n− k, k + 1)

q − n+ 1
− 1

≥ 1

2
·min(q − n− k, k + 1)− 1

≥ 16 logm+ 2n− 1.

Let µ = E
[∑k

ℓ=1 I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ]

]
. The above implies that (n − 2) ≤ 1

2µ. Hence, a Chernoff

bound implies that

Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≤ n− 2

]
≤ Pr

[
k∑

ℓ=1

I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≤ 1

2
µ

]

≤ exp

(
−
(
1
2

)2
µ

2

)
= exp

(
−µ

8

)
≤ exp (−2 logm) =

1

m2
.

All together, this implies that for j < i, Pr
[
E ijk
]
≤ 1/m2.

For j > i, the argument can be modified as follows. Notice that j’s k’th pick will be after i’s k’th pick,
hence, we need only sum over ℓ from 1 to k − 1. This gives

Pr

[
k−1∑
ℓ=1

I[g(ℓ−1)n+j ≻i g(k−1)n+i] ≥ k − (n− 2)

]
≤ Pr

[
k−1∑
ℓ=1

I[g(ℓ−1)n+j ⪰i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≥ k − (n− 2)

]

= Pr

[
k−1∑
ℓ=1

I[g(ℓ−1)n+j ⪰̸i P
((k−ℓ)n+i−j)
(ℓ−1)n+j−1 ] ≤ n− 3

]
.

The analysis of the expectation goes through (replacing k with k − 1) since we never use that j < i, at
least until getting the expectation is lower bounded by

k−1∑
ℓ=1

q − n− k

q − n− ℓ+ 1
.

Now, we can continue with

k−1∑
ℓ=1

q − n− k

q − n− ℓ+ 1
≥

k∑
ℓ−1

q − n− k

q − n− ℓ+ 1
− 1,

at which point the remainder of the analysis continues to hold (off by one) until µ ≥ 16 logm+2n− 2. This
is still sufficient for (n− 3) ≤ 1

2µ and µ ≥ 16 logm, which is all that was needed for the Chernoff bound to

hold. This means that Pr
[
E ijk
]
≤ 1/m2 for j > i as well.
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Union bounding over the q possible choices of k and n possible choices of j, we get that

Pr

 ⋃
k:32 logm+4n≤k≤q−32 logm−5n

⋃
j:j ̸=i

E ijk

 ≤ qn

m2
=

1

m
.

Proof of Lemma 8. Let L be the last ⌊64n logm+12n2⌋ items according to πi. Just as in Lemma 5, we will
decompose

Pr

 ⋃
k:q−32 logm−5n<k≤q−1

⋃
j:j ̸=i

E ijk

 ≤ Pr

 ⋃
k:q−32 logm−5n<k≤q−1

⋃
j:j ̸=i

E ijk

∣∣∣∣∣∣ b(q−1)i /∈ L

+ Pr
[
b(q−1)i ∈ L

]

≤
∑
j:j ̸=i

Pr

 ⋃
k:q−32 logm−5n<k≤q−1

E ijk

∣∣∣∣∣∣ b(q−1)i /∈ L

+ Pr
[
b(q−1)i ∈ L

]
.

We upperbound each of these summands. We begin with Pr
[
b(q−1)i ∈ L

]
. We again slit decompose this

depending on if i received any goods in L during the giveaway phase.

Pr
[
b(q−1)i ∈ L

]
≤ Pr

[
b(q−1)i

∣∣ {γji | j ̸= i} ∩ L = ∅
]
+ Pr [{γji | j ̸= i} ∩ L ̸= ∅] .

For Pr [{γji | j ̸= i} ∩ L ̸= ∅], recall that γji are just random items from the pool from when the pool is of

size at least m− n2, hence, the probability each is an element of L is at most |L|
m−n2 . Using the assumption

that m ≥ 2n2, we have that this is at most 2|L|
m ≤ 128n logm+20n2

m .
For Pr

[
b(q−1)i ∈ L

∣∣ {γji | j ̸= i} ∩ L = ∅
]
, since we are conditioning on i not being given any items in L

during the giveaway phase, the only way that i will receive such items is if they pick them during round
robin. For b(q−1)i ∈ L, i must receive at least 2 items in L. This means that even when i made their
second to last pick at Round Robin gn(q−n−1)+i the pool was Pn(q−n−1)+i−1, the only available items were
from L, i.e.,Pn(q−n−1)+i−1 ⊆ L. Notice that |Pn(q−n−1)+i−1| = m − n(n − 1) − (n(q − n − 1) + i − 1) =

2n − i + 1. We will union bound over all possible sets S ∈
(

L
2n−i+1

)
analyzing the probability that

Pr
[
Pn(q−n−1)+i−1 = S

∣∣ {γji | j ̸= i} ∩ L ̸= ∅
]
.

We can decompose

Pr
[
Pn(q−n−1)+i−1 = S

∣∣ {γji | j ̸= i} ∩ L ̸= ∅
]

= Pr [S ⊆ P0 | {γji | j ̸= i} ∩ L ̸= ∅] ·
Pn(q−n−1)+i−1∏

t=1

Pr [gt /∈ S |S ⊆ Pt−1 ∧ {γji | j ̸= i} ∩ L ̸= ∅] .

For the first term and all terms where t ≡ i mod n, this probability may be hard to compute, but we can
upperbound it by 1. For all other terms with t ̸≡ i mod n,

Pr [gt /∈ S |S ⊆ Pt−1 ∧ {γji | j ̸= i} ∩ L ̸= ∅] = 1− |S|
|Pt−1|

.

Hence, this entire product is upper bounded by

n(q−n−1)+i−1∏
t=1:t̸≡i mod n

n(q − (n− 1)) + 1− t− (2n− i+ 1)

n(q − (n− 1) + 1− t
.

Notice that this is now the same analysis as the proof of Claim 3 with m replaced with q(n−1) and n+1− i
replaced with 2n+ 1− i. Hence, the above product is upperbounded by

2

(
2

(n(q − (n− 1)))1−1/n

)2n+1−i

.
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Using the fact that m ≥ 2n2 so n(q − (n− 1)) ≥ m/2, this is at most

2

(
4

m1−1/n

)2n+1−i

.

Union bounding over the at most
( |L|
2n+1−i

)
≤ |L|2n+1−i ≤ (64n logm+ 10n2)2n+1−i subsets S, we get that

Pr
[
b(q−1)i

∣∣ {γji | j ̸= i} ∩ L = ∅
]
≤
(
256n logm+ 48n2

m1−1/n

)2n+1−i

≤
(
256n logm+ 48n2

m1/2

)2n+1−i

.

Since we have restricted to m ≥ (256n logm+ 40n2)2, m1/2 ≥ 256n logm+ 48n2, so the inside is at most 1.
Hence, since 2n+ 1− i ≥ n+ 1 ≥ 2, this is at most(

64n logm+ 12n2

m1/2

)2

=
65536n2 log2 m+ 24576n3 logm+ 2304n4

m
.

Hence, we have that

Pr
[
b(q−1)i ∈ L

]
≤ 65536n2 log2 m+ 24576n3 logm+ 2304n4 + 128n logm+ 24n2

m
.

Finally, fix some agent j ̸= i. We consider Pr
[⋃

k:q−32 logm−5n<k≤q−1 E
ij
k

∣∣∣ b(q−1)i /∈ L
]
. Notice that if

b(q−1)i /∈ L, as long as |Aj ∩ L| ≥ 32 logm + 5n, then for all k ≤ 32 logm + 5n, bik ⪰i bi(q−1) ≻i bjk,

so E ijk does not hold. Hence, we wish to upperbound the probability that |Aj ∩ L| < 32 logm + 5n. We
use the second equivalent process, and consider sampling all of γi′j′ items along with sets R0, . . . , Rq and
goods picked by agent i, gt with t ≡ i mod n, but we have not yet sampled which non-i agent receives which
items in R0, . . . , Rq. Notice that conditioned on bi(q−1) /∈ L, |Ai ∩ L| ≤ 1. Since n(n − 1) items are in the

giveaway phase and |R0|+ |Rq| = n−1, this implies that
∣∣∣L ∩ (⋃q−1

ℓ=1 Rℓ

)∣∣∣ ≥ |L|−n2 ≥ ⌊64n logm+11n2⌋ ≥
64n logm + 10n2. Notice that |Aj ∩ L| ≥

∑q−1
ℓ=1 I[Aj ∩ Rl ∩ L ̸= ∅]. Further, this is a sum of independent

Bernoulli variables with Pr [Aj ∩Rl ∩ L ̸= ∅] = |Rl∩L|
n−1 . Hence, E[

∑q−1
ℓ=1 I[Aj ∩Rl ∩L ̸= ∅]] ≥

∑q−1
ℓ=1

|Rl∩L|
n−1 =

|L∩(
⋃q−1

ℓ=1 Rℓ)|
n−1 ≥ 64 logm+ 10n. We can then use a Chernoff bound to show that

Pr [|Aj ∩ L| ≤ 32 logm+ 5n] ≤ Pr

[
q−1∑
ℓ=1

I[Aj ∩Rl ∩ L ̸= ∅] ≤ 32 logm+ 5n

]

≤ Pr

[
q−1∑
ℓ=1

I[Aj ∩Rl ∩ L ̸= ∅] ≤ 1

2
E

[
q−1∑
ℓ=1

I[Aj ∩Rl ∩ L ̸= ∅]

]]

≤ exp

− (1/2)2E
[∑q−1

ℓ=1 I[Aj ∩Rl ∩ L ̸= ∅]
]

2


≤ exp

(
−32 logm

8

)
≤ 1

m4
≤ 1

m
.

Hence, we have that ∑
j:j ̸=i

Pr

 ⋃
k:q−32 logm−5n<k≤q−1

E ijk

∣∣∣∣∣∣ b(q−1)i /∈ L

 ≤ n

m
.

Putting this together, we have that

Pr

 ⋃
k:q−32 logm−5n<k≤q−1

⋃
j:j ̸=i

E ijk
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≤ 65536n2 log2 m+ 24576n3 logm+ 2304n4 + 128n logm+ 24n2 + n

m
.

Proof of Lemma 9. Let L be the last n−1 items according to πi. A sufficient condition for
⋃

k:k=q

⋃
j:j ̸=i E

ij
k =⋃

j:j ̸=i E ijq to hold is that {γij | i ̸= j} = L, i.e., i is able to give away their bottom n− 1 goods. In this case,
biq ≻i L while bjq ∈ L for all j ̸= i. For this to hold, the only necessary condition is that no other agent has
given away a good in L prior to i giving them away. There are at most n2 items given away before i is able

to give, and each of these is an element of L with probability at most |L|
m−n2 . Since we are assuming that

M ≥ 2n2, this is at most 2n
m . Hence,

Pr

 ⋃
k:k=q

⋃
j:j ̸=i

E ijk

 ≤ 2n

m
.

C Non-existence of SD-EFX allocations

Complementing Theorem 1, in this section we show that SD-EFX allocations may not exist, even for additive
valuations. Additionally, this also contrasts with the fact that the existence of EFX remains an elusive open
problem.

We first consider an instance m = 4 items and n = 2 agents having identical additive valuation function
v : 2[4] → R≥0. The function v is such that v({1}) = 4, v({2}) = 1 + ϵ, v({3}) = 1, and v({4}) = 1 − ϵ.

Indeed, the only EFX allocations in this instance are A = ({1} , {2, 3, 4}) and Â = ({2, 3, 4} , {1}). Note
that an SD-EFX allocation must also be EFX, therefore, if an SD-EFX allocation exists for this instance it
must be A or Â.

Furthermore, if an allocation is SD-EFX, then it must also be EFX for any other instance in which both
agents have the same preference order over the items. Now consider a second instance wherein both agents
instead have the additive function v̂ such that v̂({1}) = 4, v̂({2}) = 3, v̂({3}) = 2, and v̂({4}) = 1. Note

that the preference order of items is the same in v and v̂, therefore, if A (or Â) is SD-EFX then it must be

EFX for the second instance. It is easy to see that neither A nor Â is EFX for the second instance. This
shows that SD-EFX allocations do not exist, even for additive valuations.
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