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A B S T R A C T

Geographical considerations such as contiguity and compactness are necessary elements of political districting
in practice. Yet an analysis of the problem without such constraints yields mathematical insights that can
inform real-world model construction. In particular, it clarifies the sharp contrast between proportionality and
competitiveness and how it might be overcome in a properly formulated objective function. It also reveals
serious weaknesses of the much-discussed efficiency gap as a criterion for gerrymandering.
1. Introduction

Optimization models have been devised for political districting for
more than half a century (e.g., [1,2]). As observed in [3], these models
have been almost exclusively concerned with the geographical layout of
districts, aside from ensuring that districts have roughly equal popula-
tions. Contiguity and compactness are seen as particularly important
and mandated in 34 and 31 U.S. states, respectively [4]. The very
term gerrymandering refers to the salamander-like shape of districts that
are contrived to benefit a certain party. Yet the fundamental problem
with gerrymandering is not the shape of the districts, but the unfair
representation that results. The ‘‘packing and cracking’’ strategies used
in gerrymandering are based on the political demographics of districts,
not their geography. Districts that look reasonable can be highly ger-
rymandered, while distorted and serpentine districts can provide fair
representation.

In recent years, a rise in political polarization has led to concern
about the competitiveness of districts as well as gerrymandering [5–
8]. When individual districts are dominated by a single political party,
their representatives may be less inclined to negotiate compromise,
possibly resulting in a more partisan legislature. Yet competitiveness
is no more tied to geography than gerrymandering is. Districts that
concentrate a single point of view can be either compact or serpentine.

The nongeographical essence of the fair districting problem suggests
that it can be usefully analyzed without the distraction of geographical
constraints. We find that such an analysis, even though it relies solely
on elementary algebra, reveals basic properties of the problem that,
to our knowledge, have not been observed in the literature. For ex-
ample, it reveals the enormous theoretical potential of gerrymandering
to undermine proportional representation, and it clarifies the conflict
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between competitiveness and proportional representation. More impor-
tantly, it can lead to optimization models that better incorporate the
fundamental goal of proportional representation without sacrifice of
competitiveness.

A geography-free analysis also reveals serious weaknesses in the
recently much-discussed efficiency gap criterion for fair districting [7,9–
11]. The efficiency gap measures the extent to which the political
parties differ in how many of their votes are ‘‘wasted’’. We show that
minimizing the efficiency gap is consistent with highly nonpropor-
tional representation and extreme noncompetitiveness. It is therefore
unsuitable, we argue, as an objective.

We recognize that geographical constraints are often a necessary
and legitimate component of the districting problem. Highly contorted
districts can raise public suspicions of gerrymandering even if it does
not exist. There may be advantages in preserving the integrity of local
political entities such as counties or precincts, and compact districts
may facilitate a legislator’s task of maintaining contact with con-
stituents. A practical model must represent these and other complexities
of the real-world situation. Yet our purpose here is not to develop
such a model, but to show that removing geographical constraints
for purposes of conceptual analysis can reveal fundamental insights
into the nature of the districting problem. These insights can, in turn,
inform the design of practical models, particularly the formulation of
the objective function.

An excellent survey of districting models appears in [3]. More
recent models include [12–15]. Various measures of gerrymandering
and competitiveness are discussed in [16], which provides further
references. In addition to the efficiency gap, many other metrics for
evaluating properties of districting plans have been proposed including
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214-7160/© 2022 Published by Elsevier Ltd. This is an open access article under th

https://doi.org/10.1016/j.orp.2022.100227
Received 23 September 2021; Received in revised form 24 January 2022; Accepted
e CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

25 January 2022

http://www.elsevier.com/locate/orp
http://www.elsevier.com/locate/orp
mailto:benade@bu.edu
mailto:nam.ho-nguyen@sydney.edu.au
mailto:jh38@andrew.cmu.edu
https://doi.org/10.1016/j.orp.2022.100227
https://doi.org/10.1016/j.orp.2022.100227
http://creativecommons.org/licenses/by-nc-nd/4.0/


Operations Research Perspectives 9 (2022) 100227G. Benadè et al.

a
l
t
p
p

d
t

T
n

s
w
p
t
m
T
o
t
h
d

𝑚
d
n

𝛼

T

F

P

t

P
a

A
t
m
r
a

3

r
w
s
I
l
𝛽

w

Table 1
List of symbols.
𝑛 Number of seats in the legislature
𝑚 Number of seats won by party A
𝛼, 𝛽 Fraction of total population that votes for party A, B
𝛼𝑖, 𝛽𝑖 Fraction of population of district 𝑖 that votes for party A, B
𝛼̄, 𝛽 Average of 𝛼𝑖, 𝛽𝑖 across majority-A, majority-B districts
,  Index set of majority-A, majority-B districts
𝜌 Proportionality ratio for party B: (1 − 𝑚∕𝑛)∕𝛽
𝛥 Voting margin 𝛼 − 𝛽 in the population as a whole
𝛿 District-level competitiveness margin
𝛿′ Margin in noncompetitive districts
𝛥eff Efficiency gap

the geometric target [17,18] and partisan symmetry as measured by the
mean-median metric or partisan bias [19–21]. Like the efficiency gap,
symmetry metrics have flaws [22]. The (non-)compatibility of these
metrics with competitiveness is left for future study.

2. The basic model

To simplify discussion we assume two political parties, A and B,
although our analysis can be readily extended to multiple parties or
interest groups. We let 𝛼 and 𝛽 be the fraction of the voting population
ligned with parties A and B, respectively, where 𝛼 + 𝛽 = 1. The
egislature contains 𝑛 seats, corresponding to 𝑛 districts. We suppose
hat A is the majority party (𝛼 > 𝛽), that all districts have the same
opulation, and that every eligible voter votes. The political districting
roblem in its simplest form is to:

ecide, for each district 𝑖 = 1,… , 𝑛,
he fraction 𝛼𝑖 of its voters aligned with party A.

(PD)

he fraction of voters aligned with party B will be 𝛽𝑖 = 1 − 𝛼𝑖. The
otation is summarized in Table 1.

In a practical political districting problem (where geography is con-
idered), the task is to decide the shape of each district, or equivalently
hich geographical regions to assign to each district, which then im-
licitly determines the fractions 𝛼𝑖, 𝛽𝑖. These fractions are, in turn, used
o assess the appropriateness/fairness of particular districting plans via
etrics such as proportionality, competitiveness and efficiency gap.
he goal of our paper is to critically examine the merits and pitfalls
f these metrics, which we hope will lead to a deeper understanding of
he problem, and can inform practical districting. With this in mind, we
ave chosen to ignore geographic considerations in (PD), and instead
irectly focus on determining the fractions 𝛼𝑖, 𝛽𝑖.

We first investigate how to design districts so that a given number
of the districts are majority A. Let  be the index set of majority-A

istricts, and similarly for . Then since all districts contain the same
umber of voters, we have
1
𝑛

(

∑

𝑖∈
𝛼𝑖 +

∑

𝑖∈
(1 − 𝛽𝑖)

)

= 𝛼 (1)

Let 𝛼̄ be the average fraction of party A adherents in majority-A
districts, and similarly for 𝛽, so that

̄ = 1
𝑚

∑

𝑖∈
𝛼𝑖 𝛽 = 1

𝑛 − 𝑚
∑

𝑖∈
𝛽𝑖

hen (1) immediately implies
𝑚
𝑛
𝛼̄ +

(

1 − 𝑚
𝑛

)

(1 − 𝛽) = 𝛼

rom this we have the following.

roposition 1. If the districts have equal population, then

𝑚 =
𝛼 + 𝛽 − 1 (2)
2

𝑛 𝛼̄ + 𝛽 − 1 h
Thus the number of seats allocated to party A is determined by
the average fraction of A voters in majority-A districts and the average
fraction of B voters in majority-B districts. The distribution of A and B
voters across their respective majority districts has no effect.

We can also derive bounds on the fractions 𝛼̄ and 𝛽. We first note
hat (2) implies

𝛼̄ =
𝛼 −

(

1 − 𝑚
𝑛

)

(1 − 𝛽)

𝑚
𝑛

𝛽 =
𝛽 − 𝑚

𝑛
(1 − 𝛼̄)

1 − 𝑚
𝑛

(3)

Due to the fact that 1
2 < 𝛽 ≤ 1, the first equation in (3) implies

1
2 + 𝑛

𝑚
(𝛼 − 1

2 ) < 𝛼̄ ≤ 𝑛
𝑚
𝛼 (4)

Since the upper bound in (4) may be greater than 1, we replace it with
min{1, (𝑛∕𝑚)𝛼}. We substitute into (4), so modified, the expression for
𝛼̄ in (3) to obtain bounds on 𝛽. This yields

roposition 2. If the districts have equal population, then the fractions 𝛼̄
nd 𝛽 have the bounds
1
2 + 𝑛

𝑚
(𝛼 − 1

2 ) < 𝛼̄ ≤ min
{

1, 𝑛
𝑚
𝛼
}

(5)

1
2 < 𝛽 ≤ min

{

1, 𝑛
𝑛 − 𝑚

𝛽
}

(6)

As a running example, suppose the electorate consists of 60% party
supporters (𝛼 = 0.6). If we wish to allot 7 of 10 legislative seats

o party A (𝑚∕𝑛 = 7∕10), the average fraction 𝛼̄ of A voters in
ajority-A districts must be between 64% and 86%, from (5). The

esulting average fraction 𝛽 of B voters in majority-B districts can be
nything between 50% and 100%, from (6).

. Gerrymandering

The above simple model reveals the theoretical potential of ger-
ymandering to defeat proportional representation. Suppose party B
ants to gerrymander the districts so that it will win 𝑛−𝑚 > 𝑛∕2 of the

eats and control the legislature, even though it is the minority party.
t can accomplish this by cracking and packing. It cracks the B vote by
etting the majority-B districts have a small average margin 𝜖, so that
̄− (1 − 𝛽) = 𝜖, or 𝛽 = 1

2 (1 + 𝜖). Substituting this into the expression for
𝛼̄ in (3), we have

𝛼̄ = 𝑛
𝑚
𝛼 − 1

2 (1 − 𝜖)
( 𝑛
𝑚

− 1
)

(7)

This is the average fraction of A voters that must be packed into
majority-A districts to ensure that 𝑛 − 𝑚 districts vote B by an average
margin of 𝜖.

In the example, suppose party B wishes to win 6 of the 10 seats even
though it has only 40% of the vote. It need only give the majority-B
districts a slight majority of B voters and pack the majority-A districts
with slightly more than 75% A voters on the average.

To find the largest number of B districts the party can engineer
(i.e., the largest value of 𝑛 − 𝑚), we note that when 𝛽 = 1

2 (1 + 𝜖), (2)
implies

𝑚
𝑛

=
𝛼 − 1

2 (1 − 𝜖)

𝛼̄ − 1
2 (1 − 𝜖)

(8)

To maximize 𝑛 − 𝑚 for a given 𝑛, we note from (8) that the smallest
integer 𝑚 such that 𝛼̄ ≤ 1 is

𝑚 =
⎡

⎢

⎢

⎢

𝑛
𝛼 − 1

2 (1 − 𝜖)

1 − 1
2 (1 − 𝜖)

⎤

⎥

⎥

⎥

= 𝑛 −
⌊

2𝑛𝛽
1 + 𝜖

⌋

Thus the largest value of 𝑛 − 𝑚 we can obtain is

𝑛 − 𝑚 =
⌊

2𝑛𝛽
1 + 𝜖

⌋

=
{

⌊2𝑛𝛽⌋, if ⌊2𝑛𝛽⌋ < 2𝑛𝛽
2𝑛𝛽 − 1, if ⌊2𝑛𝛽⌋ = 2𝑛𝛽

here the second equality holds for sufficiently small 𝜖 > 0. Also we
ave 𝑛 − 𝑚 > 𝑛∕2 when 𝛽 > 1 . Thus
4
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Proposition 3. If the districts have equal population, gerrymandering
can yield at least as many as 2𝛽𝑛 − 1 seats for the minority party when
2𝑛𝛽 is integral and ⌊2𝛽𝑛⌋ seats otherwise. In particular, the minority party
can control the legislature if it accounts for more than a quarter of the
population.

For example, if only 41% of the population votes for party B, it
can gerrymander the districts so as to win 8 of the 10 seats. In fact,
gerrymandering can give party B control of the legislature if it accounts
for only 26% of the population.

4. Proportionality and competitiveness

Proportionality, or proportional representation, means that the frac-
tion of districts that favor a given party is roughly the fraction of people
who belong to that party. Competitiveness means that the minority
party in a district has some chance of winning future elections, which
can occur when the fraction of people who belong to it is not too much
less than 50%. We will see that competitiveness in all districts is sharply
at odds with proportionality.

We define a proportionality ratio 𝜌 to be the ratio of party B’s
representation in the legislature to its representation in the popula-
tion, so that 𝜌 = (1 − 𝑚∕𝑛)∕𝛽. A ratio 𝜌 = 1 is ideal, while 𝜌 =
0 means that the minority party wins no seats at all, and 𝜌 > 1
means it is overrepresented. Maximizing proportionality corresponds
to minimizing |1 − 𝜌|.

We measure competitiveness in a district by the margin of that
district’s majority party over its minority party. Thus if we require a
margin of 𝛿 in every district, we have 𝛿 = 𝛼𝑖 − 𝛽𝑖 in majority-A districts
and 𝛿 = 𝛽𝑖 − 𝛼𝑖 in majority-B districts. This implies

𝛽 = 1
2 −

(𝑚
𝑛
− 1

2

)

𝛿, or 𝑚
𝑛

= 1
2 +

1
2 − 𝛽

𝛿
(9)

The tradeoff between proportionality and competitiveness is more in-
tuitive when the competitiveness margin 𝛿 is compared to the overall
margin 𝛥 between the parties. Thus we let 𝛥 = 𝛼 − 𝛽 = 1 − 2𝛽, so that

= 1
2 (1 − 𝛥). Using this, (9), and the definition of 𝜌, we obtain the

following, which holds with or without geographical constraints:

Proposition 4. If all the districts have the same population, and 𝛥 is the
oting margin in the population as a whole, then a margin of 𝛿 in each
istrict results in a proportionality ratio

=
1 − 𝛥∕𝛿
1 − 𝛥

(10)

This result implies a severe incompatibility between proportionality
and general competitiveness. We first note that 𝜌 ≤ 1 because 𝛿 ≤ 1.
Furthermore, we can see as follows that greater competitiveness in all
districts (smaller 𝛿) implies much less proportionality (smaller 𝜌). Since
necessarily 𝜌 ≥ 0, (10) implies 𝛿 ≥ 𝛥. Formula (10) also reminds us that
the minority party wins no seats at all when 𝛿 = 𝛥. Now suppose, for
example, that the minority party represents 𝛽 = 48% of the voters, so
that 𝛥 = 4%. If we desire a reasonable proportionality ratio of 𝜌 = 5∕6,
which allows the minority party to win 𝜌𝛽 = 40% of the seats, we must
tolerate a large margin of 𝛿 = 20% in each district. If we wish to achieve
a more competitive margin of 8%, then 𝜌 = 52%, and the minority party
must settle for only 25% of the seats.

Thus, even a modest degree of competitiveness excludes any sem-
blance of proportionality when all districts have the same margin. We
will see in Section 6, however, that by allowing some districts to have
larger margins than others, we can arrange for 2(𝑛 − 𝑚) districts to be
3

very competitive.
5. Efficiency gap

The efficiency gap is a much-discussed measure of gerrymandering.
When the gap is small, gerrymandering is presumably less severe,
which suggests that a reasonable objective is to minimize the effi-
ciency gap. However, we will see that there are three problems with
minimizing the efficiency gap.

• The efficiency gap is fully determined by the total population of
districts won by the majority party. It is insensitive to any other
characteristics of the districting plan.

• Minimizing the efficiency gap is consistent with a substantial lack
of proportionality, except when the two parties have roughly
equal support in the population.

• Minimizing the efficiency gap is consistent with a complete ab-
sence of competitiveness. Moreover, this can occur simultaneously
to a lack of proportionality.

It therefore seems desirable to strive for proportionality and compet-
itiveness directly, rather than use the efficiency gap as a measure of
fairness.

5.1. Computing the efficiency gap

The efficiency gap is defined as the absolute difference between the
number of votes ‘‘wasted’’ by party A and the number wasted by party
B, divided by the total number of votes. The number of votes wasted by
party A in a given district is the number of votes cast for A minus the
number necessary to win, or if A loses in the district, the total number
of votes cast for A in the district; and similarly for B.

We no longer assume that all districts have equal size, and so the
treatment to follow is fully general with respect to the calculation of the
efficiency gap. Let 𝑝𝑖 be the population (number of voters) in district
𝑖. Let 𝑃 be the total population, 𝑝𝐴 the total population of majority-A
districts, and similarly for 𝑝𝐵 , so that

𝑃 =
𝑛
∑

𝑖=1
𝑝𝑖 𝑝𝐴 =

∑

𝑖∈
𝑝𝑖 𝑝𝐵 =

∑

𝑖∈
𝑝𝑖

The number of votes wasted by parties A and B, respectively, is given
by
∑

𝑖∈
(𝛼𝑖 −

1
2 )𝑝𝑖 +

∑

𝑖∈
𝛼𝑖𝑝𝑖 and

∑

𝑖∈
(𝛽𝑖 −

1
2 )𝑝𝑖 +

∑

𝑖∈
𝛽𝑖𝑝𝑖

he absolute difference is
∑

𝑖∈
(𝛼𝑖 − 𝛽𝑖 −

1
2 )𝑝𝑖 −

∑

𝑖∈
(𝛽𝑖 − 𝛼𝑖 −

1
2 )𝑝𝑖

|

|

|

= |

|

|

𝑛
∑

𝑖=1
𝛼𝑖𝑝𝑖 −

𝑛
∑

𝑖=1
𝛽𝑖𝑝𝑖 + 𝑝𝐵 − 1

2𝑃
|

|

|

ividing by 𝑃 , we obtain the following, which holds with or without
eographical constraints or equal district populations:

roposition 5. The efficiency gap is given by

eff =
|

|

|

𝛼 − 𝛽 +
𝑝𝐵
𝑃

− 1
2
|

|

|

= |

|

|

𝑝𝐵
𝑃

− 2𝛽 + 1
2
|

|

|

Thus for a given 𝛽, the efficiency gap depends only on the fraction of the
population that lives in majority-B (or majority-A) districts. The distribution
of A and B voters across individual districts has no influence.

5.2. Minimizing the efficiency gap

We now consider how to minimize the efficiency gap for a given 𝛽.
The gap is zero when 𝑝𝐵∕𝑃 = 2𝛽 − 1

2 . Since 𝑝𝐵∕𝑃 ≥ 0 and 𝛽 ≤ 1
2 , this

inimum can be achieved only when 1
4 ≤ 𝛽 ≤ 1

2 . When 0 ≤ 𝛽 ≤ 1
4 ,

we must set 𝑝𝐵∕𝑃 = 0 to obtain a minimum efficiency gap of 1
2 − 2𝛽.

Thus we have the following, which does not assume equal district
populations:
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roposition 6. If there are no geographical constraints, the efficiency gap
s minimized when
𝑝𝐵
𝑃

= max
{

2𝛽 − 1
2 , 0

}

(11)

nd the resulting gap is

eff =

{ 1
2 − 2𝛽 if 0 ≤ 𝛽 ≤ 1

4

0 if 1
4 ≤ 𝛽 ≤ 1

2

(12)

This minimum may not be achievable in the presence of geograph-
ical constraints.1

If we assume the districts have equal population, 𝑝𝐵∕𝑃 = 1 − 𝑚∕𝑛.
Thus if 1

4 ≤ 𝛽 ≤ 1
2 , we minimize the efficiency gap by choosing

so that 1 − 𝑚∕𝑛 is as close as possible to 2𝛽 − 1
2 . That is, we set

𝑚 = ⌊( 32 − 2𝛽)𝑛 + 1
2 ⌋. The resulting proportionality ratio is

=
1 − (1∕𝑛)

⌊( 3
2 − 2𝛽

)

𝑛 + 1
2

⌋

𝛽
(13)

f 0 ≤ 𝛽 ≤ 1
4 , we set 𝑚 = 𝑛, and the proportionality ratio is 𝜌 = 0.

In the example with 𝛽 = 40% and equally sized districts, the
fficiency gap is minimized at zero when 𝑚 = 7. We can achieve this
ap with any districting plan in which party B wins 1 − 𝑚∕𝑛 = 30% of
he districts. The resulting proportionality ratio is 𝜌 = 75%, from (13).

.3. Proportionality and competitiveness

A minimized efficiency gap is consistent with a severe lack of
roportionality and competitiveness. Supposing again that the districts
ave equal size, (13) implies that the proportionality ratio decreases
apidly with the minority party’s share of the population. For example,
f there are 10 districts, the minority party obtains 30% of the seats
hen its share is 40%, but it receives only 10% of the seats when its

hare is 30%, and no seats at all when its share is 25%.
A minimized efficiency gap also implies a very large competitiveness

argin. Recall that 𝑝𝐵∕𝑃 = 1−𝑚∕𝑛 when the districts have equal size. If
e again suppose that 𝛿 is the competitiveness margin in every district,

hen we have from (9) that

=
1
2 − 𝛽

1
2 − 𝑝𝐵∕𝑃

Putting this together with Proposition 6, we conclude the following.

1 As a real-world example of the effect of geographical constraints, Mas-
achusetts is known to have roughly 30% Republican voters spread fairly
omogeneously throughout the state. This, together with state laws governing
edistricting, makes it impossible to create any districts won by the Republican
arty [23] and, correspondingly, leads to a minimum efficiency gap much
4

arger than the bound above. i
Table 2
Effect of minimizing the efficiency gap.
𝛽 range 𝛥eff 𝜌 𝛿

0 ≤ 𝛽 ≤ 1
4

1
2
− 2𝛽 0 1 − 2𝛽

1
4
≤ 𝛽 ≤ 1

2
0 2 − 1

2𝛽
1
2

Proposition 7. Suppose that all districts have equal population and
competitiveness margin 𝛿. Then the minimum efficiency gap 𝛥eff , along with
he resulting proportionality ratio 𝜌 and competitiveness margin 𝛿, are as
iven in Table 2.

A minimum efficiency gap of zero, which occurs whenever 1
4 ≤ 𝛽 ≤

1
2 , results in an extremely large competitiveness margin of 50%. Con-
urrently, the proportionality ratio can range anywhere between 0 and
1 when 1

4 ≤ 𝛽 ≤ 1
2 . For example, 𝛽 = 30% results in a proportionality

atio of 1
3 and a competitiveness margin of 50%. Therefore minimizing

efficiency gap can result in simultaneously poor proportionality and
competitiveness.

6. Designing an objective function

We have seen that there is a sharp conflict between proportionality
and general competitiveness, with or without geographical constraints.
Minimizing the efficiency gap only exacerbates the problem. While it
has the virtue of a direct concern with gerrymandering rather than
geographical features, it can result in substantial disproportionality and
a total lack of competitiveness.

An escape from this dilemma is to aim for proportionality while
achieving competitiveness in some districts, with possibly wider mar-
gins in the remaining districts. A satisfactory degree of proportionality
is consistent with a surprisingly large number of highly competitive
districts. This, in turn, suggests a practical objective for the districting
problem.

To see how this can occur, recall the previous example in which
the minority represents 48% of the population and wins 40% of the
legislative seats, resulting in a wide 20% margin in all districts. This is
illustrated in the top half of Fig. 1, in which the minority party wins 4
of 10 districts, resulting in a proportionality ratio of 𝜌 = 5∕6. We can
ransfer 10% − 𝜖 of the party-A voters in 4 of the majority-A districts
o a majority-B district, and replace them with the same number of
arty-B voters from the majority-B districts. This results in the voter
istribution illustrated in the bottom half of Fig. 1. Note that party B
till represents 48% of voters and still wins 4 districts. Yet 8 districts
ave become highly competitive, with only 2 districts retaining the
0% margin. In general, we can obtain as many as 2(𝑛 − 𝑚) highly
ompetitive districts in this fashion.

To verify this algebraically, suppose that we require a small compet-
tiveness margin of 𝜖 in 𝑘 majority-A districts and 𝑘 majority-B districts,
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where 𝑘 ≤ 𝑛 − 𝑚, and allow a larger margin of 𝛿′ in the remaining 𝑛−2𝑘
districts. This implies

𝛽 = 𝑘
𝑛
( 12 + 𝜖) + 𝑘

𝑛
( 12 − 𝜖) +

(

1 − 𝑚
𝑛
− 𝑘

𝑛
)

( 12 + 1
2 𝛿

′) +
(𝑚
𝑛
− 𝑘

𝑛
)

( 12 − 1
2 𝛿

′)

= 1
2 −

(𝑚
𝑛
− 1

2

)

𝛿′

Note that 𝑘 and 𝜖 drop out of the formula, and we again obtain (9) and
(10), except that 𝛿′ replaces 𝛿. Fig. 1 illustrates why any 𝑘 ≤ 𝑛 − 𝑚
yields the same result. Voters can just as easily be exchanged in fewer
than 𝑘 = 4 majority-B districts without affecting 𝛽 or 𝜌. We conclude
the following:

Proposition 8. If all districts have the same number of voters, then for
any 𝑘 ≤ 𝑚 − 𝑛 there is a districting plan in which 𝑘 majority-controlled
districts and 𝑘 minority-controlled districts are competitive with arbitrarily
small margins, and in which the proportionality ratio is

𝜌 =
1 − 𝛥∕𝛿′

1 − 𝛥
(14)

where 𝛿′ is the margin in the remaining 𝑛 − 2𝑘 districts.

This is an ideal result that assumes an absence of geographical
onstraints. Yet it suggests that a reasonable objective is to maximize
roportionality (by minimizing |1 − 𝜌|) subject to a lower bound on

the number of competitive districts controlled by each party. An upper
bound can be placed on the acceptable margin 𝛿′ in the remaining,
possibly noncompetitive districts. This allows an optimization model
to focus on two primary goals of political districting: proportional
representation without gerrymandering, and avoidance of excessive
polarization. Neither of these goals is fundamentally geographical in
nature.
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