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Abstract

We consider the fundamental problem of fairly and efficiently allocating T indivisible items
among n agents with additive preferences. The items become available over a sequence of
rounds, and every item must be allocated immediately and irrevocably before the next one
arrives. Previous work shows that when the agents’ valuations for the items are drawn from
known distributions, it is possible (under mild technical assumptions) to find allocations that
are envy-free with high probability and Pareto efficient ex-post.

We study a partial-information setting, where it is possible to elicit ordinal but not cardinal
information. When a new item arrives, the algorithm can query each agent for the relative
rank of this item with respect to a subset of the past items. When values are drawn from
i.i.d. distributions, we give an algorithm that is envy-free and (1 − ε)-welfare-maximizing with
high probability. We provide similar guarantees (envy-freeness and a constant approximation to
welfare with high probability) even with minimally expressive queries that ask for a comparison
to a single previous item. For independent but non-identical agents, we obtain envy-freeness
and a constant approximation to Pareto efficiency with high probability. We prove that all our
results are asymptotically tight.

1 Introduction

We consider the following fundamental problem in fair division. A set of T indivisible items, arriving
one at a time, must be allocated among a set of n agents with additive preferences. The value vi,t
that agent i has for the item in round t is realized once the item arrives. Each item must be
allocated immediately and irrevocably upon arrival, and we ask that the overall allocation is fair
and efficient.

Previous work on this problem shows that, despite the uncertainty about future valuations, one
can achieve simultaneous fairness and efficiency when agents’ values are stochastic. Specifically,
when each vi,t is drawn i.i.d. from a distribution D, the simple algorithm that maximizes welfare —
each item is allocated to the agent with the highest value — is envy-free with high probability and
(obviously) ex-post Pareto efficient [DGK+14, KPW16]. The same guarantee holds for independent
and non-identical agents (vi,t is drawn from an agent-specific distribution Di) for the algorithm
that maximizes weighted welfare [BG22]. Even when agents’ valuations for an item are correlated
(but items are independent), Pareto efficiency ex-post is compatible with strong fairness guarantees
(“envy-freeness with high probability or envy-freeness up-to-one item ex-post”) [ZP20].
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Despite the computational simplicity of (most of) the aforementioned algorithms, an unappealing
aspect, especially from a practical perspective, is the requirement that agents report an exact
numerical value for each item. Eliciting expressive additive valuations can be impractical, e.g., due to
agents’ cognitive limitations. Motivated by such considerations, a growing body of work in AI studies
what can be achieved by algorithms that only elicit ordinal information. This idea originates from
[PR06], who defined the notion of distortion to measure the worst-case deterioration of an aggregate
cardinal objective (e.g., utilitarian social welfare) due to only having access to preferences of limited
expressiveness, particularly ordinal rankings. Recent works prove bounds on the distortion in the
context of many problems in social choice, e.g., voting [CNPS17, GKM17, MSW20, MW19, Kem20a,
Kem20b, GHS20], matching [FRFZ14], and participatory budgeting [BNPS21]; see [AFRSV21] for
a recent survey.

In this paper, we study the power and limits of eliciting ordinal information in dynamic fair
division. The value vi,t of agent i for item t is drawn from an unknown distribution upon arrival,
and the algorithm is provided, from each agent, partial ordinal information about this item, e.g., its
rank relative to the past items allocated to this agent, or even just a single past item allocated to this
agent. Under what distributional assumptions and elicitation constraints, can we simultaneously
achieve qualitative fairness and efficiency? We answer these questions.

1.1 Our Contribution

We start by establishing a separation between the cardinal setting and our ordinal one. Pareto
efficiency alone is trivial (allocate all goods to the same agent) and, in the cardinal setting, it is
known that Pareto efficiency ex-post is compatible with envy-freeness with high probability (as long
as agents are independent). We prove (Theorem 4) that in our setting, even for the case of two
i.i.d. agents and any known distribution, envy-freeness with high probability is incompatible with
even a very mild notion of (exact) Pareto efficiency, one-swap-Pareto efficiency, which requires that
there is no beneficial one-to-one trade of items between agents (but allows for improvements via
many-to-many trades of items).

We proceed to give an essentially matching positive result. For any number of i.i.d. agents
and an unknown distribution D, there exists an algorithm (Algorithm 1) that is envy-free with high
probability and guarantees a (1−ε)-approximation to the optimal utilitarian social welfare (the sum
of utilities), for all ε > 0, with high probability (Theorem 5). When an item arrives, the algorithm
learns for each agent i its relative rank compared to a subset of prior items allocated to agent i
(but otherwise knows nothing about the underlying numerical valuation). Our algorithm works in
epochs. Each epoch has an exploration/sampling phase, where each agent gets a pre-determined
number of items, followed by an exploitation/ranking phase, where each fresh item is given to an
agent whose empirical quantile is largest. The goal is to make a sublinear number of errors compared
to the “ideal” algorithm that allocates each item to the agent with the highest true quantile. The
algorithm has to balance the need for sampling, which leads to more accurate empirical quantiles,
against the number of inefficient allocations made while sampling. A significant technical barrier is
that we cannot fix a target accuracy because the underlying distribution is unknown. That is, for
every fixed accuracy for the empirical quantiles, there exists a distribution for which this accuracy
is not good enough for even a constant approximation to the optimal welfare. Instead, we need to
make our epochs progressively longer, thereby guaranteeing progressively better bounds.

Given this strong positive result, we explore the limits of what we can achieve when further
restricting the amount of information available. What if each agent can remember only a single item
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previously allocated to them, and the fresh item is compared to just this one item?1 Surprisingly,
the aforementioned positive result can almost be recovered even in this very restrictive setting.
We prove that there exists an algorithm (Algorithm 2) that is envy-free with high probability and
guarantees a (1−1/e)2− ε approximation to the optimal welfare with high probability, for all ε > 0
(Theorem 9). Our algorithm again proceeds in epochs with gradually increasing exploration and
exploitation phases; this time the goal is a sublinear number of differences compared to allocating
each item to a uniformly random agent with quantile at least 1− 1/n, which we prove is envy-free
and approximately efficient (Lemmas 2 and 1). When exploring, the algorithm puts a new item in
memory, estimates its quantile, and rejects it if not sufficiently close to 1− 1/n. We need to sample
enough to ensure high confidence in the estimated quantile, but also account for the additional
sampling since an item’s quantile value might be far from 1 − 1/n to begin with; several technical
details need to be accounted for. We give a near-matching lower bound: no algorithm with a
memory of one item can achieve a 0.999−approximation to the social welfare with high probability;
therefore a constant approximation (which Algorithm 2 provides) is all we can hope for.

Finally, we relax the i.i.d. condition and study agents that are independent but not identical;
each agent i’s values are drawn from an unknown distributionDi. Even with unbounded memory, we
show that it is impossible to get a 1+

√
5

4 ≈ .809 approximation to Pareto efficiency with probability
more than 2/3, even for two agents (Theorem 12). At the same time, we prove that Algorithms 1
and 2 are envy-free and 1/e approximately Pareto efficient with high probability! Note that, though
both algorithms give the same formal guarantees and Algorithm 2 elicits strictly less information,
one might still prefer to use Algorithm 1 since it has significantly shorter exploration phases.

We leave the study of correlated agents as an interesting open problem. Finally, we note that be-
yond stochastic valuations, [BKPP18] show that it is possible to achieve sublinear envy by randomly
allocating every item when agents’ valuations are adversarially generated (and this is optimal); how-
ever, sublinear envy is incompatible with non-trivial efficiency even in the cardinal setting [ZP20].

1.2 Related Work

A number of works study fair division under ordinal preferences, e.g., [AGMW15, BEL10, BBL+17,
NNR17], but often these models do not assume an underlying cardinal model and work directly
on the ordinal preferences. [ABM16] assume underlying cardinal information and, among other
results, bound the approximation ratio of truthful mechanisms that elicit rankings. Closer to our
work, [HS21] study rules that have access to the ranking of the top-k items of each agent and bound
the ratio of the social welfare of the allocation returned by a rule in the worst case. They also
characterize the value of k needed to achieve prominent notions of fairness, namely envy-freeness
up to one item (EF1) and approximate maximin share guarantee (MMS), as well as bound the loss
in efficiency incurred due to fairness constraints in this setting.

Our work contributes to the growing literature in dynamic fair division [KPS14, AAGW15,
FPV15, FPV17, BKPP18, HPPZ19, ZP20, GPT21, BKM22, GBI21, VPF21] (and we note that
the welfare-maximizing algorithms of [DGK+14, KPW16, BG22] work in the dynamic setting, even
though the their settings are not explicitly dynamic). To the best of our knowledge, we are the first
to study imperfect expressivity in a dynamic setting in fair division.

1So, the algorithm only learns if the new item is better or worse than the item in memory and may, at that time,
choose to replace the item in memory.
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2 Preliminaries

A set of T indivisible items/goods, labeled by G = {1, 2, · · · , T}, needs to be allocated to a set of
n agents, labeled by N = {1, . . . , n}. Agent i ∈ N assigns a value vi,t ∈ [0, 1] to item t ∈ G. We
assume agents have additive valuation functions, so vi(S) =

∑
t∈S vi,t for S ⊆ G. An allocation A

is a partition of the items into bundles A1, . . . , An, where Ai is the set of items assigned to agent
i ∈ N . Each allocation has an associated utility profile v(A) = (v1(A1), . . . , vn(An)).

Items arrive online, one per round. The agents’ valuations for the item in round t (the t-th
item) are realized when the item arrives. Every item is allocated immediately and irrevocably
before moving on to the next round. We write Gt = {1, 2, · · · , t} for the set of items that arrived in
the first t rounds, and Ati for the allocation of agent i after the t-th item was allocated. We consider
two different models which specify how values are generated. In the i.i.d. model, the value of agent
i for item t is independently drawn from an unknown distribution D with CDF F , i.e., vi,t ∼ D
for all i ∈ N and t ∈ G. In the non-i.i.d. model, the value of item t for agent i is independently
drawn from an unknown, agent-dependent distribution Di with CDF Fi, i.e., vi,t ∼ Di for all i ∈ N
and t ∈ G. We write Xi for the random variable for i’s valuation, and Xi,t for the random variable
for i’s valuation for item t. It is often convenient to work directly with the quantile of an agent’s
value rather than the value itself; let Qi = Fi(Xi) and Qi,t = Fi(Xi,t) respectively be the random
variable denoting the quantile of agent i the associated item. Note that all Qi and Qi,t are i.i.d.
and follow a Unif[0, 1] distribution. Unless explicitly stated otherwise, we assume all distributions
are continuous (i.e., do not have point masses).

Ordinal Information. We assume the realizations vi,t are not available. Instead, our algorithms
have access to ordinal information. Specifically, given current item t, the algorithm can access each
agent’s ranking for S = {t}∪M , M ⊆ Gt−1. The size of M , which we will informally refer to as the
memory size, determines the complexity of eliciting information from each agent. In one extreme,
agent i compares a new item t to a single item they had previously received, i.e.,M ⊆ At−1i , |M | ≤ 1.
In the other extreme, t is compared to all previous items she received, soM = At−1i .We write σi(S)
for the ranking of agent i for a subset S of the items, and σ−1i (S, t) for the position of item t ∈ S with
respect to a subset S according to agent i. The highest value item is in position 1 and the lowest
in position |S|. For example, if S = {1, 4}, vi,1 = 1 and vi,4 = 0.1, σi(S) = (1 � 4), σ−1i (S, 1) = 1
and σ−1i (S, 4) = 2.

Algorithms. An algorithm A, in each step t, queries each agent for ordinal information with
respect to some subset M and then makes a (possibly randomized) allocation decision based on
this ordinal information and the history so far. An instance of our problem is parameterized by
the number of agents n and the (unknown) value distributions D1, . . . , Dn. Let EP (t) be the event
that some algorithm satisfies property P (e.g., envy-freeness or PO or ε-welfare) at time t. We are
interested in the probability that an algorithm satisfies certain properties in the limit, as the number
of rounds tends to infinity, where the randomness is over the random choices of the algorithm as
well as the randomness in the valuations.

Definition 1. An algorithm satisfies P with high probability if limt→∞ Pr[EP (t)] = 1.

Note that this definition of high probability allows for dependency on n and the underlying
distributions (i.e., they are treated as constants).
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Efficiency notions. An allocation A Pareto dominates an allocation A′, denoted A � A′, when
vi(Ai) ≥ vi(A′i) for all i ∈ N and there exists j ∈ N with vj(Aj) > vj(A

′
j). An allocation A is Pareto

efficient or Pareto optimal (PO) if there is no feasible (integral) allocation that Pareto dominates
it. An allocation A′ is in the (one) swap-neighborhood of A when it can be created from A with
a single exchange of items between one pair of agents. Formally, there exist i, j ∈ N and items
zj ∈ Aj and zi ∈ Ai so that A′i = (Ai \ {zi}) ∪ {zj}, A′j = (Aj \ {zj}) ∪ {zi}, and A′k = Ak for all
other agents k 6= i, j. An allocation A is one-swap Pareto optimal (SPO) if it is undominated by any
allocation in its swap-neighborhood. We use a notion of approximate efficiency defined by [RF90]
according to which an allocation A is α-Pareto efficient when v(A)/α is undominated.

The social welfare of an allocation A is sw(A) =
∑

i∈N vi(Ai). Let allocation A
∗ denote a (social)

welfare optimal allocation for which sw(A∗) ≥ sw(A) for all feasible allocations A. An allocation
provides an α-approximation to welfare if sw(A) ≥ α · sw(A∗).

Fairness notions. We focus on a prominent notion of fairness called envy-freeness. An allocation
AT = (AT1 , . . . , A

T
n ) of T items is envy-free (EF) when vi(A

T
i ) ≥ vi(A

T
j ) for all i, j ∈ N , and

c-strongly-envy-free (c-strong-EF) when vi(Ai) ≥ vi(Vj) + cT .

3 Ideal Quantile-based Algorithms.

For our analysis, it will be useful to compare our algorithms with ideal algorithms that know exact
quantile values for every item (and, in fact, several of our lower bounds apply to these stronger
algorithms too). Two ideal algorithms of interest are (1) quantile maximization, which allocates
each item to the agent with the highest quantile value for it, and (2) “q−threshold,” which allocates
each item uniformly at random among agents whose quantile is at least q (and uniformly at random
over all agents, if all quantile values are less than q).

In the i.i.d. model, quantile maximization is the same as value maximization, and thus envy-free
with high probability and ex-post welfare optimal. The property we will use is c-strong envy-freeness,
for some distribution-dependent constant c, which we state as Lemma 1. This was essentially proved
by [DGK+14]; we provide an alternate proof that also works, essentially unchanged, for the n−1

n -
threshold algorithm; it can be found in Appendix A.1.

Lemma 1. [Essentially [DGK+14].] In the i.i.d. and non-i.i.d. models, the quantile maximization
algorithm and the n−1

n -threshold algorithm are c-strongly-envy-free, with high probability, where the
constant c = mini∈N (E[Xi | Qi ≥ 1/2]− E[Xi])/(4n).

Note that c is strictly positive since our distributions are continuous. In the i.i.d. model, we
show that the n−1

n -threshold algorithm gives a
(
1− 1

e

)2 − ε approximation to welfare (Lemma 2)
with high probability.

Lemma 2. In the i.i.d. model, the n−1
n -threshold algorithm guarantees a

((
1− 1

e

)2 − ε)-approximation
to welfare, with high probability, for all ε > 0.

Proof. Let F be the CDF of an arbitrary continuous distribution. The expected contribution of an
item to the welfare of the threshold algorithm is at least

E
Q∼Unif[0,1]

[
F−1(Q) | Q ≥ n− 1

n

]
· Pr
~Q∼Unif[0,1]n

[
max
i∈N

Qi ≥
n− 1

n

]
.
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For the first term we have

E
Q∼Unif[0,1]

[
F−1(Q) | Q ≥ n− 1

n

]
= E

Q∼Unif[n−1
n
,1]

[
F−1(Q)

]
=

(∫ 1

n−1
n

F−1(q) · fUnif[n−1
n
,1](q) dq

)

=

(∫ 1

n−1
n

F−1(q) · n dq

)

≥(fBeta[n,1](x)=nx
n−1)

(∫ 1

n−1
n

F−1(q) · fBeta[n,1](q) dq

)

= E
Q∼Beta[n,1]

[
F−1(Q) | Q ≥ n− 1

n

]
· Pr
Q∼Beta[n,1]

[
Q ≥ n− 1

n

]
≥ E

Q∼Beta[n,1]

[
F−1(Q)

]
· Pr
Q∼Beta[n,1]

[
Q ≥ n− 1

n

]
= E

~Q∼Unif[0,1]n

[
F−1(max

i∈N
Qi)

]
· Pr
~Q∼Unif[0,1]n

[
max
i∈N

Qi ≥
n− 1

n

]
,

where we used the fact that the maximum of n draws from U [0, 1] follows a Beta(n, 1). The expected
contribution to the welfare is thus at least

E
~Q∼Unif[0,1]n

[
F−1(max

i∈N
Qi)

](
1−

(
1− 1

n

)n)2

≥
(

1− 1

e

)2

E
~Q∼Unif[0,1]n

[
F−1(max

i∈N
Qi)

]
Finally, for any fixed ε > 0, standard Chernoff bounds tell us that with high probability, the

optimal welfare of T items is at most T ·(1+ε/2)E ~Q∼Unif[0,1]n
[
F−1(maxi∈N Qi)

]
while the welfare of

the threshold algorithm is at least T ·(1−ε/2)
(
1− 1

e

)2
[E ~Q∼Unif[0,1]n

[
F−1(maxi∈N Qi)

]
. Indeed, the

expected optimal welfare is equal to T ·E ~Q∼Unif[0,1]n
[
F−1(maxi∈N Qi)

]
, the sum of T i.i.d. random

variables with expectation E ~Q∼Unif[0,1]n
[
F−1(maxi∈N Qi)

]
. The standard multiplicative Chernoff

bound says that the sum of i.i.d. variables exceeds (1 + ε/2) times its expectation µ is at most
exp
(
−µε2/12

)
. Plugging in µ = T · E ~Q∼Unif[0,1]n

[
F−1(maxi∈N Qi)

]
, we get the desired statement.

The statement about the welfare of the threshold algorithm follows similarly. Thus, the algorithm
is a (

1− 1

e

)2

· (1− ε/2)/(1 + ε/2) ≥
(

1− 1

e

)2

(1− ε) ≥
(

1− 1

e

)2

− ε

approximation to welfare, with high probability.

Finally, we prove that both ideal algorithms are approximately efficient. Let P∗ be the following
property of an allocation: all items such that exactly one agent has quantile values at least 1−1/n are
in the bundle of this agent. Both ideal algorithms (quantile maximization and 1 − 1/n-threshold)
satisfy P∗. We prove that, in the non-i.i.d. model, P∗ implies an almost 1/e approximation to
efficiency. Our proof uses the fact that there is a (roughly) 1/e probability that exactly one agent
has the high quantile, so the value of an agent’s bundle in an algorithm that satisfies P∗ is, with
high probability, a 1/e approximation to their value for their T/n most valuable items. Therefore,
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when considering an alternate allocation A′, the agent in A′ that gets at most T/n items cannot be
improved upon by more than a 1/e factor.

Lemma 3. In the non-i.i.d. model, every algorithm whose allocations satisfy P∗ is (1/e−ε)-Pareto
optimal, with high probability, for all ε > 0.

Proof. Fix an ε ∈ (0, 1), and choose ε′ such that 1−ε′
(1+ε′)2 ·

1
e > 1

e − ε (using ε′ = ε/3 will do).
Fix distributions with CDFs F1, . . . , Fn for each agent i ∈ N , and a time T . Suppressing the
superscript, for ease of notation, let Ai = ATi be the bundle allocated at time T to each agent i by
an algorithm that satisfies P∗. Let Atop

i be the set of the T/n most valuable items for each agent
i. Let Ahigh

i = { t ∈ GT | Fi(vi,t) ≥ 1− 1+ε′

n } be the set of items that agent i has “high” value for,
in the sense that they come from the top 1+ε′

n portion of their distribution. We show the following
3n events, Eij for i ∈ N and j ∈ {1, 2, 3}, occur simultaneously with high probability (in T ).

1. Ei1: vi(Atop
i ) ≤ vi(Ahigh

i ).

2. Ei2: vi(Ahigh
i ) ≤ T · (1+ε

′)2

n EQ∼Unif[1−1/n,1][F
−1(Q)].

3. Ei3: vi(Ai) ≥ T · 1−ε
′

en EQ∼Unif[1−1/n,1][F
−1(Q)].

Each of these individually will follow from a straightforward application of Hoeffding’s inequality
or Chernoff bounds, showing they each individually occur with probability exponentially close to 1
in T . This implies that they all occur simultaneously with high probability. Finally, we will show
that conditioned on all 3n occurring, the allocation is (1/e− ε)-PO.

Let us begin with Ei1 for each agent i. The event occurs when there are at least T/n items t ∈ GT
such that Fi(vi,t) ≥ 1 − 1+ε′

n . Each item independently satisfies this property (Fi(vi,t) ≥ 1 − 1+ε′

n )
with probability 1+ε′

n . Hence the probability this does not occur is at most 2 exp
(
−2ε′2T

)
.

Next, consider Ei2 for each agent i. The expected contribution of each item to vi(A
high
i ) is

E
Q∼Unif[0,1]

[
F−1i (Q) · I

[
Q ≥ 1− 1 + ε′

n

]]
=

1 + ε′

n
E

Q∼Unif[1− 1+ε′
n

,1]

[F−1i (Q)]

≤ 1 + ε′

n
E

Q∼Unif[1− 1
n
,1]

[F−1i (Q)].

We now use the following multiplicative version of the Chernoff bound,

Pr

[∑
i

Xi ≥ (1 + δ)
∑
i

E[Xi]

]
≤ exp

(
−δ

2

3

∑
i

E[Xi]]

)
,

to conclude that the probability that vi(A
high
i ) exceeds T · (1+ε

′)2

n EQ∼Unif[1−1/n,1][F
−1(Q)] ≥ (1 +

ε′) · E[vi(A
high
i )] is at most exp

(
−
ε′2(1+ε′)E

Q∼Unif[1− 1
n ,1]

[F−1
i (Q)]

3n · T
)
.

Finally, consider Ei3 for each agent i. We will show that the expected contribution of each
item to vi(Ai) is at least 1

en · EQ∼Unif[1− 1
n
,1][F

−1
i (Q)]. Indeed, consider an item such that the

quantile for agent i is Qi > 1 − 1/n while Qj < 1 − 1/n for all agents j 6= i. This occurs
with probability 1

n ·
(
1− 1

n

)n−1 ≥ 1
en , and when this occurs, since the algorithm satisfies P∗, it

7



must allocate the item to i. Further, when this does occur, the expected value of such an item is
EQ∼Unif[1− 1

n
,1][F

−1
i (Q)], since it is independent of the other agent’s values. Hence the expectation

is at least 1
en EQ∼Unif[1− 1

n
,1][F

−1
i (Q)]. Finally, we again use a multiplicative Chernoff bound to show

that

Pr

[
vi(Ai) ≤ (1− ε′) · T

en
E

Q∼Unif[1− 1
n
,1]

[F−1i (Q)]

]
≤ exp

(
−
ε′2 EQ∼Unif[1− 1

n
,1][F

−1
i (Q)]

2en
· T

)
.

Now, suppose that Eij hold for all i ∈ N and j ∈ {1, 2, 3}. We show that this implies the
allocation A1, . . . , An is (1/e− ε)-PO. Fix an arbitrary allocation A′1, . . . , A′n. We show there exists
an agent i ∈ N such that vi(A′i) <

vi(Ai)
1/e−ε . First, there must be some agent i such that |A′i| ≤ T/n.

Since A′i can be at most as valuable as the most-valuable T/n items, we have

vi(A
′
i) ≤ vi(A

top
i )

≤(Ei1) vi(A
high
i )

≤(Ei2) T · (1 + ε′)2

n
E

Q∼Unif[1−1/n,1]
[F−1(Q)]

≤(Ei3) · (1 + ε′)2

(1− ε′)(1/e)
vi(Ai)

<
1

1/e− ε
vi(Ai),

as needed.

4 Unbounded memory in the i.i.d. model

We explore some fundamental limits of our setting. Efficiency by itself is easy: allocate all items
to the same agent. However, in contrast to the cardinal setting, we find one-swap Pareto efficiency
is incompatible with envy-freeness with high probability, even for two i.i.d. agents, and even when
the underlying distribution is known.

Theorem 4. In the i.i.d. model, even for n = 2 agents, there does not exist an algorithm A which is
one-swap Pareto efficient and envy-free with high probability, even when values are sampled according
to D, for any continuous, bounded and known value distribution D.

Proof. Fix an arbitrary, continuous value distribution D and an algorithm A.
As the agents are a priori identical, we can assume without loss of generality that A gives the

first item to agent 1. We will show that, with a positive probability, this decision becomes an
irrevocable “mistake,” in the sense that agent 2 really liked the item and agent 1 did not. This
mistake will make envy-freeness and one-swap PO incompatible.

First, we find values to make this mistake sufficiently bad. Let g : [0, 1]→ [0, 1] be the function
g(q) = E[X | X ≤ F−1(q)]/E[X], which maps a quantile q to the ratio of the expected value of
an item below quantile q to the expected value of an arbitrary item. g is a continuous increasing
function with g(1) = 1, so there is some quantile q̂ < 1 such that g(q̂) ≥ 0.9. Let q∗2 = max(q̂, 0.9).
Since g is increasing, g(q∗2) ≥ g(q̂) ≥ 0.9. Let q∗1 = 0.1, v∗1 = F−1(q∗1) and v∗2 = F−1(q∗2). Let
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Emistake be the event that X1,1 < v∗1 and X2,1 > v∗2. Define c := Pr[Emistake] = (1− q∗2) · q∗1 to be the
probability that Emistake occurs. D is continuous, so c > 0. Our lower bound on the probability that
the allocation at step t violates either envy-freeness or one-swap PO will only depend on c.

Let Ej be the event that for item j we have that both X1,j ≥ v∗1 and X2,j ≤ v∗2. If Emistake occurs,
the only way to maintain one-swap Pareto efficiency is to allocate item j to agent 1 every time Ej
occurs; otherwise, swapping items 1 and j between the two agents yields a Pareto improvement.
This constraint will make envy-freeness unlikely.

Let Emanyhigh(t) be the event
∑t

j=2X2,j · I[Ej ] ≥ (t − 1) · 0.7 · E[X]. In other words, Emanyhigh(t)
occurs when agent 2 has a high value for items j, 2 ≤ j ≤ t, for which Ej occurs (i.e., the items
that must be given to agent 1 in order to satisfy one-swap PO). Let Enormalval(t) denote the event
that

∑t
j=2X2,j ≤ (t− 1) · 1.1 ·E[X]. We first show that for sufficiently large t, the probability that

both Emanyhigh(t) and Enormalval(t) occur is at least 1/2. To do so, we prove each event occurs with
probability at least 3/4, and then apply a union bound.

First, since each X1,j and X2,j are independent, Pr[Ej ] ≥ 0.9 · 0.9 = 0.81, and E[X2,j |Ej ] =
E[X2,j | X2,j ≤ v∗2]. Also, from the definition of g(q̂) and the choice of q∗2, E[X2,j | X2,j ≤ v∗2] ≥
0.9 · E[X]. It follows that E[X2,j · I[Ej ]] = E[X2,j |Ej ] · Pr[Ej ] ≥ 0.729 · E[X]. A straightforward
Chernoff bound establishes that Pr[Emanyhigh(t)] ≥ 3/4 for t at least 6

E[X] .

Let Yj = X2,j · I[Ej ] for all j. Then, E[Yj ] ≥ 0.729 ·E[X], and E[
∑T

j=2 Yj ] ≥ (t− 1) · 0.729 ·E[X].
We are interested in the probability that

∑t
j=2 Yj is at least (t− 1) · 0.7 · E[X], i.e., the probability

that
∑t

j=2 Yj is at least
0.7

0.729 its expectation.
We use the following Chernoff bound: Let Y1, . . . , Yn be independent random variables that take

values in [0, 1], and let Y be their sum. Then, for all δ ∈ [0, 1), Pr[Y ≤ (1− δ)E[Y ]] ≤ e−
E[Y ]δ2

2 .
Continuing our derivation:

Pr

 t∑
j=2

Yj ≥ (t− 1) · 0.7 · E[X]

 = Pr

 t∑
j=2

Yj ≥
0.7

0.79
E[

t∑
j=2

Yj ]


= 1− Pr

 t∑
j=2

Yj <
0.7

0.79
E[

t∑
j=2

Yj ]


≥ 1− Pr

 t∑
j=2

Yj ≤ 0.89E[

t∑
j=2

Yj ]


≥ 1− exp

(
−
E[
∑t

j=2 Yj ](0.89)2

2

)
,

which is at least 3/4 when
E[
∑t
j=2 Yj ](0.89)

2

2 is at least ln(4), or, equivalently, if t ≥ 1 + 2 ln(4)
0.7·(0.89)2·E[X]

.

Since 2 ln(4)
0.7·(0.89)2 < 5 and E[X] < 1, so t ≥ 6

E[X] suffices. Pr[Enormalval(t)] ≥ 3/4 follows similarly.
Next, observe that Emanyhigh(t)∩Enormalval(t) is independent of Emistake, since the two events depend

on disjoint sets of independent random variables. Therefore, Pr[Emistake ∩ Emanyhigh(t) ∩ Enormalval(t)] =
Pr[Emistake] · Pr[Emanyhigh(t) ∩ Enormalval(t)] ≥ c · 1/2 for t ≥ 6/E[X].

Let ESPO(t) and EEF(t) be the events that the allocation at step t is one-swap PO, and envy-free,
respectively. When Emistake∩Emanyhigh(t)∩Enormalval(t) occur, the allocation cannot be both one-swap
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PO and envy-free, i.e. Pr
[
ESPO(t) ∩ EEF(t) | Emistake ∩ Emanyhigh(t) ∩ Enormalval(t)

]
= 1. To see this,

notice that first, due to Emistake, the only way to remain one-swap PO is to give each item j to agent
1 every time Ej occurs. Second, Emanyhigh(t) ensures that agent 2’s value for these items, and hence
agent 2’s value for agent 1’s bundle, is at least 0.7 · (t− 1) · E[X] + v2,1. Third, Enormalval(t) ensures
that agent 2’s value for all items is at most 1.1 · (t− 1) ·E[X] + v2,1, which is strictly less than twice
her value for agent 1’s bundle. We conclude that the allocation at step t cannot be proportional,
and is hence not envy-free. Overall, we have that

Pr
[
ESPO(t)

]
+ Pr

[
EEF(t)

]
≥ Pr

[
ESPO(t) ∪ EEF(t)

]
= Pr

[
ESPO(t) ∩ EEF(t)

]
≥ Pr

[
ESPO(t) ∩ EEF(t) ∩ Emistake ∩ Emanyhigh(t) ∩ Enormalval(t)

]
= Pr

[
ESPO(t) ∩ EEF(t) | Emistake ∩ Emanyhigh(t) ∩ Enormalval(t)

]
·

· Pr[Emistake ∩ Emanyhigh(t) ∩ Enormalval(t)]

≥ c/2.

Therefore, for t ≥ 6/E[X], at least one of Pr
[
ESPO(t)

]
and Pr

[
EEF(t)

]
is at least c/4. We conclude

that no algorithm can be both envy-free and one-swap PO with high probability.

Theorem 4 implies that when we have access to only ordinal information, we need to settle for
some approximation to envy-freeness and efficiency. Our main positive result for this section is an
algorithm that essentially matches the aforementioned lower bound.

Theorem 5. In the i.i.d. model, Algorithm 1 achieves envy-freeness and a (1 − ε) approximation
to welfare, with high probability, for all ε > 0.

Algorithm 1 works in epochs: each epoch k has an exploration/sampling phase, where each
agent i receives a pre-determined set of items, denoted Gki , irrespective of their valuation. This is
followed by an exploitation/ranking phase, where each item is given to the agent with the highest
empirical quantile (with respect to items received in the preceding exploration phase, i.e. Gki ).

Algorithm 1: EF + (1− ε)-Welfare
for epoch k = 1 . . . do

Sampling Phase: (n · k4 items)
Give the j-th item in this phase to agent j(mod n).
Ranking Phase: (k8 items)
for each item g in this phase do

Elicit σ−1i (Gki ∪ {g}, g) for all i ∈ N .
Allocate g to an agent j ∈ arg mini∈N σ

−1
i (Gki ∪ {g}, g).

We start with a technical lemma, which gives us a bound on the length of the exploration period
we need in each epoch. The following definition will be useful.
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Definition 2. A sample of n ·m items (where each agent is allocated exactly m items) is ε-accurate
if, with probability at least 1 − ε, the relative rank of a fresh item (with respect to the sample) is
highest for the agent with highest quantile value.

Lemma 6. If ε, δ ∈ (0, 1), and m ∈ Z+ are such that ε > 2n

√
ln(2n/δ)

2m , then giving m samples to
each agent is ε-accurate with probability at least 1− δ.

Proof. We will use the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [DKW56, Mas90] to show
the empirical CDF of sampled quantiles is reasonably close to a uniform distribution with probability
1−δ. We then show this is sufficient to guarantee ε-accuracy for the chosen ε. Let F̂i be the empirical
CDF of the sampled quantiles for agent i, i.e., F̂i(q) for q ∈ [0, 1] is a random variable that describes
the proportion of sampled items with quantile at most q. Note that F̂i exactly captures agent i’s
ranking for a new item: if a fresh item has quantile qi for agent i and qj for agent j, then i ranks it
higher than j exactly when F̂i(qi) > F̂j(qj).

Noting that the CDF for the actual quantile distribution (i.e., the uniform distribution) is the
identity on [0, 1], the DKW inequality states that for all γ > 0, Pr

[
supq∈[0,1] |F̂i(q)− q| > γ

]
≤

2e−2mγ
2 . We want this condition to hold for all n agents, simultaneously, with probability at

least 1 − δ, so we pick γ such that 2e−2mγ
2 ≤ δ/n and apply a union bound; it suffices to choose

γ =

√
ln(2n/δ)

2m .
We now show that the DKW condition (supq∈[0,1] |F̂i(q) − q| ≤ γ) being satisfied for all agents

i is sufficient to guarantee ε-accuracy. Consider sampling quantiles Q1, . . . , Qn for a fresh item.
Let imax ∈ argmaxi∈N Qi be a quantile-maximizing agent (technically a random variable). Our
goal is to show that with probability at least 1 − ε (with respect to the samples of Q1, . . . , Qn)
F̂imax(Qimax) > F̂j(Qj) for all j 6= imax. This ensures that imax has the highest empirical rank, and
hence receives the item. Let Q(1), . . . , Q(n) be the respective order statistics. A key observation is
that Q(n) −Q(n−1) ∼ Beta[1, n] [Gen19]. The PDF of a Beta[1, n] distribution is f(x) = nxn−1 for
x ∈ [0, 1]. Since f(x) ≤ n, Pr

[
Q(n) −Q(n−1) < ρ

]
< nρ for all ρ > 0. Plugging in ρ = 2γ, we have

Pr
[
Q(n) −Q(n−1) ≤ 2γ

]
< 2nγ. We will show that as long as ε > 2nγ, ε-accuracy holds. First,

we have Pr
[
Q(n) −Q(n−1) > 2γ

]
> 1 − ε. Conditioned on Q(n) − Q(n−1) > 2γ, the item is given

to imax. To see why, observe Qimax = Q(n) and Qj ≤ Q(n−1) for all j 6= imax, by definition. Using
the DKW inequality condition, it follows that F̂imax(Qimax) ≥ Qimax − γ > Qj + γ ≥ F̂j(Qj). We

conclude that for ε > 2n

√
ln(2n/δ)

2m , ε-accuracy is satisfied with probability at least 1− δ.

Using Lemma 6, we can get, for each epoch, a bound on the number of decisions where Algo-
rithm 1 differs from the quantile maximization algorithm.

Lemma 7. The allocation of Algorithm 1 differs from that of the quantile maximization algorithm
after T steps by at most f(T ) items with high probability, where f(T ) ∈ O(poly(n) · T 15/16).

Proof. We start by bounding the accuracy of Algorithm 1 in each epoch k. In epoch k, each agent
receives k4 items during the sampling phase. We claim that the sample in epoch k for k ≥ 3n is
εk-accurate for εk := 3n/k3/2 with probability at least 1 − δk, for δk := 2n/e2k. Indeed, first note
that by the choice of k, we have that εk, δk ∈ (0, 1). Hence, we just need to show that these values
satisfy the inequality of Lemma 6. We have that

εk =
3n

k3/2
>

2n

k3/2
= 2n

√
1

k3
= 2n

√
ln(e2k)

2k4
= 2n

√
ln(2n/δk)

2k4
.
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Next, fix a time T . Slightly abusing notation, let k(t) = min{K ∈ N|
∑K

k=1 nk
4 +k8 ≥ t} be the

function that given an item t returns the epoch item t is in. Notice that T ≥
∑k(T )−1

k=1 nk4 + k8 ≥
(k(T ) − 1)8, and therefore k(T ) ≤ 2T 1/8. In any run of the algorithm, we can classify every item
t ≤ T into one of four categories.

1. Item t was allocated in one of the first 3n− 1 epochs, that is, k(t) < 3n.

2. Item t was allocated in the sampling phase of epoch k(t) ≥ 3n.

3. Item t was allocated in the ranking phase of epoch k(t) ≥ 3n; the epoch was εk(t)-accurate.

4. Item t was allocated in the ranking phase of epoch k(t) ≥ 3n; the epoch was not εk(t)-accurate.

We say an item t was a mistake if it was given to an agent with a non-maximum quantile for it. We
show that the number of mistakes in each category are bounded by 310n9, 2nT 5/8, 9nT 15/16, and
158n ln(T ) respectively, with high probability. This implies that the total number of mistakes is at
most the sum of these quantities, which is O(poly(n) · T 15/16), with high probability, via a union
bound.

The number of items in the first category is at most

3n−1∑
k=1

k4n+ k8 ≤
3n∑
k=1

(3n)4n+ (3n)8 ≤ (3n)5n+ (3n)9 ≤ 310n9.

Hence, the number of mistakes in the first category is also at most 310n9.
For the second category, since k(T ) ≤ 2T 1/8, we have that the total number of items in the

sampling phase is (with probability 1) upper bounded by

k(T )∑
k=1

nk4 ≤ nk(T )5 ≤ 2nT 5/8.

Each item t in the third category has probability εk(t) of being a mistake. The expected number
of mistakes is therefore at most

∑k(T )
k=3n εk(t)k

8 =
∑k(T )

k=3n 3nk13/2 ≤ 3nk(T )15/2 ≤ 8nT 15/16. Using
Hoeffding’s inequality we get that with high probability the number of mistakes is at most 9nT 15/16,
since a deviation of nT 15/16 occurs with probability at most exp

(
−2n2T 15/8/T

)
= exp

(
−2n2T 7/8

)
.

For the fourth category, the expected number of items is at most
∑k(T )

k=3n δkk
8 = 2n

∑k(T )
k=3n

k8

e2k
≤

2n
∑∞

k=1
k8

e2k
≤ 158n. Using Markov’s inequality we have that the number of mistakes is at most

158n ln(T ) with probability at least 1− ln(T ), i.e., with high probability.

Finally, we can prove Theorem 5 as a relatively straightforward consequence of Lemma 7, since
the ideal quantile maximization algorithm satisfies nice properties (e.g., Lemma 1).

Proof of Theorem 5. Fix a distribution D with CDF F and let X be a random variable with dis-
tribution D. Fix some ε to be (1− ε)-welfare-maximizing. Let ET1 be the event that the maximum
social welfare at time T is at least 1/2 · E[X] · T , let ET2 be the event that quantile maximization is
c-strongly-EF for c = (E[X | F (X)≥1/2]−E[X])

4n , and let ET3 be the event that Algorithm 1 differs from
quantile maximization on at most f(T ) items from Lemma 7. We first claim that ET1 ∩ ET2 ∩ ET3
occurs with high probability in T . Note that Lemmas 1 and 7 tell us ET2 and ET3 each occur with high
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probability, respectively. For ET1 , the maximum value for each item is in expectation at least the
expected value for a single agent E[X]. Hence, a Chernoff bound tells us ET1 occurs with probability
at least 1 − exp

(
−E[X]T

8

)
, i.e., with high probability. The claim holds because the intersection of

a finite number of high probability events occurs with high probability.
Next, note that for sufficiently large T , since f(T ) ∈ o(T ), f(T ) ≤ (E[X | F (X)≥1/2]−E[X])

8n · T
and f(T ) ≤ ε/2 · E[X] · T (for any fixed ε that does not depend on T ). Fix such a sufficiently
large T . We show that, conditioned on ET1 ∩ ET2 ∩ ET3 , both EF and (1 − ε)-welfare hold. Let
AQM = (AQM1 , . . . , AQMn ) be the allocation of quantile maximization and A = (A1, . . . , An) be the
allocation of Algorithm 1. Beginning with envy-freeness, we have that for all pairs of agents i and
j,

vi(Ai) ≥(ET3 ) vi(A
QM
i )− f(T )

≥(ET2 ) vi(A
QM
j )− f(T ) +

(E[X | F (X) ≥ 1/2]− E[X])T

4n

≥(ET3 ) vi(Aj)− 2f(T ) +
(E[X | F (X) ≥ 1/2]− E[X])T

4n
≥ vi(Aj),

so the allocation is envy-free. Further, noting that sw(AQM ) is the maximum social welfare, we
have the welfare approximation is at least

sw(A)

sw(AQM )
=

sw(AQM )− (sw(AQM )− sw(A))

sw(AQM )

≥(ET3 ) sw(AQM )− f(T )

sw(AQM )

= 1− f(T )

sw(AQM )

≥(ET1 ) 1− f(T )

1/2 · E[X] · T

≥(ET3 ) 1− ε/2 · E[X] · T
1/2 · E[X] · T

= 1− ε,

as needed.

5 Bounded memory in the i.i.d. model

In this section, we are interested in the more ambitious problem of designing dynamic algorithms
with even more limited partial information: each agent is allowed to “remember” only a single item.
We first show that, in this case, we need to settle for constant approximations of welfare.

Theorem 8. In the i.i.d. model, given a memory of one item per agent, there is no algorithm A that
is .999-welfare maximizing with high probability for all continuous and bounded value distributions.

Proof. We prove that this negative result holds even for an even stronger class of algorithms in
which, at each step t, the algorithm selects quantile thresholds qt1, . . . , qtn ∈ [0, 1] for each agent, and
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once an item arrives the algorithm observes, for each agent, whether the quantile of their sampled
value Qi,t is above or below the threshold qti . Note that this provides at least as much information
about the fresh item as comparing it to any single prior item, since there is some uncertainty about
the values and quantiles of all prior items.

We first focus on the algorithm for a single time-step and show there is a distribution of values
such that, regardless of the quantile thresholds selected and allocations made, it cannot do well.

Fix a number of agents n and assume n ≥ 3. We handle the special case of n = 2 at the end
of this proof, as it requires a different distribution. For simplicity we consider a distribution that
takes values larger than 1; re-scaling (specifically, dividing all values by 2 + ε) gives a distribution
upped bounded by 1 and does not affect any of our arguments. Consider the value distribution X,
with

X ∼


Unif[0, ε] with probability 1− 1

n ,

Unif[1, 1 + ε] with probability 2
3n , and

Unif[2, 2 + ε] with probability 1
3n

for some small ε > 0 to be fixed later. Intuitively, X is a continuous version of a discrete distribution
which takes low value (near 0) with probability 1− 1

n , medium value (near 1) with probability 2
3n ,

and high value (near 2) with probability 1
3n . Let FX be its CDF. Trivially, the maximum social

welfare of T items when all agents have this value distribution is at most T · (2 + ε).
We show that regardless of what quantile thresholds the algorithm chooses at step t and which

decision it makes given the resulting signals, the expected value of the agent receiving item t is
at least (1 − ε) · 1

144e away from optimal. To that end, fix arbitrary thresholds q1, . . . , qn. First,
we partition the agents depending on whether their quantile qi is above or below 1 − 2n

3 . We let
Nbelow = { i ∈ [n] | qi < 1− 2n

3 } and N
above = { i ∈ [n] | qi ≥ 1− 2n

3 }. Either |Nbelow| ≥ dn/2e
or |Nabove| ≥ dn/2e; we analyse each case separately. Since n ≥ 3, we have dn/2e ≥ 2.

Case I: |N below| ≥ dn/2e. In this case, it will be difficult for the algorithm to distinguish
between agents in Nbelow with medium value and those with high value. Consider the event E
that one agent imax ∈ Nbelow has quantile Qimax > 1 − 1

3n , one agent ismax ∈ Nbelow has quantile
Qismax ∈ (1 − 2

3n , 1 −
1
3n), and all other agents i ∈ N \ { imax, ismax } have quantile Qi < 1 − 1

n .
First, we show that Pr[E ] ≥ 1

72e , a constant. To compute this probability, note that there are at
least dn/2e · (dn/2e − 1) choices of imax and ismax. Once these have been selected, the probability
of E occurring for this pair of agents is

1

3n
· 1

3n
·
(

1− 1

n

)n−2
≥(n≥3) 1

9n2

(
1− 1

n

)n−1
≥ 1

9en2
.

Since dn/2e · (dn/2e − 1) ≥ n2/8, we can that conclude Pr[E ] ≥ 1
72e . Conditioned on E occurring,

imax has high value, ismax has medium value, and all other agents have low value. However, from the
perspective of the algorithm, two agents (imax and ismax) give a high signal, and it’s equally likely
that each of them is the agent with the high value (note that we condition on E). The algorithm
must therefore allocate the item to an agent with at most medium value (upper bounded by 1 + ε)
with probability at least 1/2, even though an agent with value at least 2 exists. Hence, in this
timestep, the algorithm has an additive error (compared to the optimum welfare) of at least (1− ε)
with probability at least 1

144e .
Case II: |Nabove| ≥ dn/2e. In this case, it will be difficult for the algorithm to distinguish

between agents in Nabove that have medium value and those with low value. Consider the event E
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Algorithm 2: Bounded Memory
for Epoch k = 1 . . . do

Sampling Phase: (k9 items)
NotWithinError← N
for trial = 1, . . . , k3 do

for i ∈ NotWithinError do
Allocate the next item to agent i, and update her memory

Test k6 − |NotWithinError| number of items (for each agent)
for i ∈ NotWithinError do

if Proportion of test items for agent i is within ±1/k2 of (n− 1)/n then
NotWithinError← NotWithinError \ { i }

Ranking Phase: (k18 items)
for each item g in this phase do

if Some agent i has high signal then
Give g to a (uniformly) random such agent

else
Give g to an agent uniformly at random

that one agent imax ∈ Nabove has quantile Qimax ∈ (1− 1
n , 1−

2
3n) and all other agents i ∈ N \{ imax }

have quantile Qi < 1− 1
n . First, we show that Pr[E ] ≥ 1

6e . Indeed, there are at least n/2 choices for
imax. For a fixed choice of imax, the probability of E occurring is 1

3n ·
(
1− 1

n

)n−1 ≥ 1
3en , and there

are at least n/2 choices for imax, so Pr[E ] ≥ 1
6e . Agent i

max and the other members of Nabove (there
is at least one more) are indistinguishable to the algorithm as they all have a low signal, so the
algorithm must give it to an agent with value at most ε with probability at least 1/2 even though
an agent with value at least 1 exists. Hence, in this timestep, the algorithm has an additive error
(compared to the optimum welfare) of at least (1− ε) with probability at least 1

12e .
In either case, for every time step, the algorithm has an additive error of at least (1 − ε) with

probability at least 1
144e , irrespective of the past allocations. As time steps are independent, standard

tail bounds give that, for sufficiently small ε > 0, the error is at least 1−ε
1000T with high probability.

The optimal social welfare is at most (2 + ε) · T ; we conclude the algorithm can be no more than
an 0.999−approximation to welfare.

The case of two agents. Finally, we handle the case of two agents. Assume values are
drawn from a Unif[0, 1] distribution. Let q1, q2 be the quantile thresholds selected by the algorithm
and, without loss of generality, suppose that 0 ≤ q1 ≤ q2 ≤ 1. At least one of the differences
q1 − 0, q2 − q1, 1− q2 must be at least 1/3. Suppose q2 − q1 ≥ 1/3 (the other cases are symmetric).
We investigate the event that both agents have Qi ∈ [q1, q2], so that agent 1 signals high and agent
2 signals low, which occurs with probability at least 1/9. Conditioned on this event, the signals do
not provide any additional information, so the algorithm chooses the agent with smaller value at
least half of the time. In this case, the expected difference between the larger and smaller values
is 1/9. Hence, the expected difference of the value from the algorithm versus the maximum social
welfare is at least 1

9 ·
1
2 ·

1
9 = 1/162 on each item. The maximum social welfare is at most T , and we

expect the difference to be at least T/1000 due to concentration, so the algorithm cannot guarantee
more than a .999 approximation, as needed.

Our positive result matches this lower bound up to a constant.
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Theorem 9. In the i.i.d. model, given a memory of one item per agent, Algorithm 2 achieves
envy-freeness and a (1− 1/e)2 − ε approximation to welfare, with high probability, for all ε > 0.

Algorithm 2 works in epochs, similar to Algorithm 1. In each epoch’s exploration/sampling
phase, it tries to find an item whose quantile is close to the n−1

n -threshold algorithm. Epoch k
makes k3 such attempts, and each candidate item is tested against k6 fresh items to get an estimated
quantile. If everything is within the error we can tolerate, the algorithm remembers this item for
this epoch; otherwise, the agent has an arbitrary item in memory during this epoch. During the
exploitation/ranking phase, Algorithm 2 tries to mimic the n−1

n -threshold algorithm (instead of the
quantile maximization algorithm as Algorithm 1 did), and, in fact, inherits its approximation factor
(Lemma 2) exactly.

Our first technical lemma, Lemma 10, gives necessary bounds on the various variables of Algo-
rithm 2 for a sample to be ε-accurate with respect to the ideal threshold algorithm; see Definition 3.
Its proof can be found in Appendix A.2.

Definition 3. A set of n items in memory, one for each agent, is ε-accurate with respect to q∗ if
with probability at least 1 − ε, when a fresh item is sampled, the agents with true quantile above
q∗ are exactly those that value the fresh item more than their item in memory.

Lemma 10. For all ε, δ ∈ (0, 1), if (1) at least τ trials are done with τ ≥ ln(2n/δ)
ε/(3n) , and (2) at least

` test items are used per trial for ` ≥ 18n2

ε2
ln
(
4τn
δ

)
, and (3) the tolerance for accepting an item

is ε/(3n), then the items in memory are ε-accurate (for all agents, simultaneously) with respect to
q∗ = n−1

n , with probability at least 1− δ.

Though Lemmas 6 and 10 resemble each other (and are used in analogous ways), the proofs
require different techniques, as the sampling processes are very different. Next, we prove an analogue
to Lemma 7: the number of disagreements between Algorithm 2 and the ideal threshold algorithm
is sublinear.2 The proofs of Lemmas 7 and 11 are similar, precisely because Lemma 6 matches
Lemma 10. Theorem 9 follows from Lemma 11 as in the i.i.d. case. The proofs of Lemma 11 and
Theorem 9 can be found in Appendices A.3 and A.4 respectively.

Lemma 11. The allocation of Algorithm 2 differs from that of the n−1
n -threshold algorithm after T

steps by at most f(T ) items with high probability, where f(T ) ∈ O(poly(n) · T 17/18).

6 The non-i.i.d. model

In this section, we study the non-i.i.d. model. We first establish a strong lower bound for the
non-i.i.d. model. The following negative result holds even for algorithms that know the associated
quantile for every fresh item.

Theorem 12. Even for 2 non-identical agents, there is no algorithm that is EF and c-PO with
probability p, for c > 1+

√
5

4 ≈ .809 and p > 2/3, for all continuous and bounded value distributions.

Proof. Suppose for contradiction that there is an algorithm A so that for all bounded continuous
distributions (X1, X2) there exists a T ∗ = T ∗(X1, X2) where for all t ≥ T ∗, A is envy-free and c-PO

2Note these are randomized algorithms, so by “differ on a item” here we mean that the distributions over agents
receiving the item differ.
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with probability p with p > 2/3 for some constant c > 1+
√
5

4 . Hence, there is some ε such that
p > 2/3 + ε and 1/c < 4

1+
√
5
− ε =

√
5− 1− ε.

Consider two distributions DF and DS ; we describe these later in the proof. Consider the three
instances I0 = (DF , DF ), I1 = (DS , DF ) and I2 = (DF , DS).

Let EA,tj be the event that A is envy-free and c-PO on instance Ij at time t for j ∈ {0, 1, 2}. By
construction, Pr

[
EA,tj

]
≥ 2/3 + ε for all j ∈ {0, 1, 2} and t ≥ T ∗.

Let z be a parameter we will fix later in the proof, and let Zti = I{Qi,t ≥ 1− z} for i = {1, 2}.
Observe that Zt1 · Zt2 is 1 with probability z2 and 0 otherwise. The following events characterize
a specific notion of a “nice” sample, in which the number of items with high quantiles for both
agents is near its expectation: ET1 = I{| 1T

∑T
t=1 Z

t
1 · Zt2 − z2| < δ}, ET2 = I{| 1T

∑T
t=1 Z

t
1 − z| <

δ}, and ET3 = I{| 1T
∑T

t=1 Z
t
2 − z| < δ} for some δ > 0. By Hoeffding’s inequality, Pr

[
ĒT1
]

=

Pr
[
| 1T
∑T

t=1 Z
t
1 · Zt2 − z2| ≥ δ

]
≤ 2 exp

(
−2Tδ2

)
. It follows that for T ≥ log(2/ε)/(2δ2), Pr

[
ĒT1
]
≤

ε. Similarly, for T ≥ log(2/ε)/(2δ2), it holds that Pr
[
ĒT2
]
≤ ε, and Pr

[
ĒT3
]
≤ ε. Consider an

arbitrary T > Tmax = max{T0, T1, T2, log(2/ε)/(2δ2)}. Applying a union bound,

Pr
[
ĒA,T0 ∪ ĒA,T1 ∪ ĒA,T2 ∪ ĒT1 ∪ ĒT2 ∪ ĒT3

]
≤

2∑
i=0

Pr
[
ĒA,Ti

]
+

3∑
i=1

Pr
[
ĒTi
]
< 3 · (1

3
− ε) + 3ε = 1.

It follows that Pr
[
EA,T0 ∩ EA,T1 ∩ EA,T2 ∩ ET1 ∩ ET2 ∩ ET3

]
> 0. Therefore, there must exist a sequence

of T items whose quantiles satisfy all of ET1 , ET2 , and ET3 , and, since A does not have access to the
items’ values, there must exist an allocation AT for these T items (in the support of A) that is EF
and c-PO, no matter which of I0, I1 or I2 the values were taken from. Let qT = {(q1(t), q2(t))}Tt=1

be these items’ quantiles. Let HB = {t ∈ [T ] : q1(t) ≥ 1 − z and q2(t) ≥ 1 − z} be the items for
which Zt1 · Zt2 = 1, and H1 = {t ∈ [T ] : q1(t) ≥ 1− z} the items for which Zt1 = 1.

Set distributionsDF = Unif[1−w, 1] andDS , under which each item is Unif[0, w] with probability
z and at Unif[1 − w, 1] with probability 1 − z, for some small positive w that we fix later in the
proof.

We have that some agent receives at most half the items in HB; without loss of generality this
is agent 2, i.e., |AT2 ∩ HB| ≥ |HB|/2. We show that there exists a feasible more than 1/c Pareto-
improvement under the values in I1. To that end, we compare AT to the allocation Â where Â1 = H1

and Â2 = H̄1.
We next bound the utilities of each agent under AT and Â. Beginning with agent 1, we have

u1(Â1) = u1(H1)

≥ |H1| · (1− w)

≥(ET1 ) T · (z − δ)(1− w)

= T (z − δ − zw + δw)

≥ T (z − δ − w)

and

u1(A1) ≤ w · |A1 ∩ H̄1|+ 1 · |A1 ∩H1|
≤ T · w + |H1| − |A2 ∩H1|
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≤ T · w + |H1| − |A2 ∩HB|

≤(ET2 ) T · w + T (z + δ)− |A2 ∩HB|
≤ T · w + T (z + δ)− |HB|/2

≤(ET1 ) T · w + T (z + δ)− T (z2 − δ)/2
= T (z − z2/2 + w + 3δ/2).

Together, these imply

u1(Â1)

u1(AT1 )
≥ z − δ − w
z − z2/2 + w + 3δ/2

=
2z − 2δ − 2w

2z − z2 + 2w + 3δ
.

Next, we consider agent 2. We have

u2(Â2) = u2(H̄1)

≥ (1− w)|H̄1|
= (1− w)(T − |H1|)

≥(ET2 ) (1− w)T · (1− (z + δ))

= T (1− z − δ − w + wz + wδ)

≥ T (1− z − δ − w).

By EA0 , AT is envy-free on I0. It follows that |AT1 | ≥ (1 − w)|AT2 |. Since |AT1 | + |AT2 | = T , we
have that |AT2 | ≤ 1

2−wT . Hence, u2(A
T
2 ) ≤ |AT2 | ≤ 1

2−wT . Combining these, we have

u2(Â2)

u2(AT2 )
=

1− z − δ − w
1

2−w
= 2− 2z − 2δ − 2w − w + wz + wδ + w2 ≥ 2− 2z − 2δ − 3w.

Choose z = 3−
√
5

2 . Note that z2 = 7−3
√
5

2 . Choose δ, w < ε/25. We then have,

u1(Â1)

u1(AT1 )
>

3−
√

5− ε/5
(
√

5− 1)/2 + ε/5

=
3−
√

5

(
√

5− 1)/2 + ε/5
− ε/5

(
√

5− 1)/2 + ε/5

>
3−
√

5

(
√

5− 1)/2 + ε/5
− 2ε

5
(
√
5−1
2 + ε

5 > 1/2)

>
3−
√

5

(
√

5− 1)/2 · (1 + 2ε/5)
− 2ε

5
(
√

5− 1 > 1)

= (
√

5− 1) · 1

1 + 2ε/5
− 2ε

5

> (
√

5− 1) · (1− 2ε/5)− 2ε

5

> (
√

5− 1)− ε/2− 2ε

5
((
√

5− 1) · 2/5 < 1/2)

>
√

5− 1− ε
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> 1/c

and
u2(Â2)

u2(AT2 )
> 2− (3−

√
5)− ε/5 >

√
5− 1− ε > 1/c,

so this is more than a 1/c Pareto Imrovement.

Algorithms 1 and 2 are envy-free with high probability, even in the non-i.i.d. model, since envy-
freeness is not an “inter-agent” property. Our last result shows that they also give a constant
approximation to Pareto efficiency, by combining Lemma 3 with Lemmas 7 and 11. Its proof can
be found in Appendix A.5.

Theorem 13. In the non-i.i.d. model, both Algorithm 1 (unbounded memory) and Algorithm 2
(one-item memory) are EF and (1/e− ε)-PO, with high probability, for all ε > 0.

Interestingly, the guarantees for Algorithm 2 in the non-i.i.d. model are only marginally worse
compared to the i.i.d. model; the approximation ratio decreases from (1−1/e)2 ≈ 0.4 to 1/e ≈ 0.37.
Finally, we note that, even though the formal guarantees in Theorem 13 are the same for the two
algorithms, and even though Algorithm 2 uses memory size of one, Algorithm 1 has the benefit of
much shorter epoch lengths (in addition to better guarantees under the i.i.d. model).
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Appendix

A Missing Proofs

A.1 Proof of Lemma 1

We focus on quantile maximization. The same proof goes through essentially unchanged for the
threshold algorithm; we explain the differences whenever it’s appropriate.

Fix distributions D1, . . . , Dn with CDFs F1, . . . , Fn. Fix two agents i and j. We will show with
high probability, i does not envy j (in a strong sense). Union bounding over all

(
n
2

)
pairs yields the

lemma statement.
As in [DGK+14], we compare the expected contribution of an item t to i’s bundle and its

expected contribution to j’s bundle. Let A be the random variable denoting the agent that received
the item. We want to consider the difference E[vi,t · I[A = i]]−E[vi,t · I[A = j]]. Let Hi be the event
that Fi(vi,t) ≥ n−1

n , and Li be the compliment. We split each of the two terms into conditional
expectations depending on the signal, beginning with the first one:

E[vi,t · I[A = i]] = E [vi,t · I[A = i] | Hi] · Pr[Hi] + E [vi,t · I[A = i] | Li] · Pr[Li].

Note that, under quantile maximization, vi,t is positively correlated with I[A = i]: for any fixed
value vi,t, A = i with probability F (vi,t)

n−1, which is increasing in vi,t . Therefore, the expectation
of the product is greater than or equal to the product of the expectations: E [vi,t · I[A = i] | Hi] ≥
E [vi,t | Hi] · Pr[A = i | Hi] and E [vi,t · I[A = i] | Li] ≥ E [vi,t | Li] · Pr[A = i | Li]. Therefore

E[vi,t · I[A = i]] ≥ E [vi,t | Hi] · Pr[A = i | Hi] · Pr[Hi] + E [vi,t | Li] · Pr[A = i | Li] · Pr[Li]

= E [vi,t | Hi] · Pr[A = i and Hi] + E [vi,t | Li] · Pr[A = i and Li].

For the threshold algorithm, we have equality above, since conditioned on either Hi or Li, vi,t is
independent of I[A = i], as the allocation depends only on the high vs low signal.

On the other hand, vi,t is negatively correlated with I[A = j]. Therefore

E[vi,t · I[A = j]] ≤ E [vi,t | Hi] · Pr[A = j and Hi] + E [vi,t | Li] · Pr[A = j and Li].

Again, for the threshold algorithm, we have equality.
Combined, we have

E[vi,t · I[A = i]]− E[vi,t · I[A = j]] ≥ E [vi,t | Hi] · (Pr[A = i and Hi]− Pr[A = j and Hi]) (1)
− E [vi,t | Li] · (Pr[A = j and Li]− Pr[A = i and Li]) . (2)

We analyze (1), Pr[A = i and Hi]−Pr[A = j and Hi]. Let Hj be the event that Fj(vj,t) ≥ n−1
n

Let Lj be its complement. We have:

(Pr[A = i and Hi and Lj ] + Pr[A = i and Hi and Hj ])

− (Pr[A = j and Hi and Lj ] + Pr[A = j and Hi and Hj ]) .

Notice that Pr[A = j and Hi and Lj ] = 0 because if agent i has a high quantile and j has a low quan-
tile, j cannot receive the item (in either algorithm). Additionally, by symmetry, Pr[A = i and Hi and Hj ] =

23



Pr[A = j and Hi and Hj ]. Therefore, (1) simplifies to Pr[A = i and Hi and Lj ]. Finally, we note
that Pr[A = i and Hi and Lj ] ≥ 1

n−1 , again, for both algorithms.
We analyze (2), Pr[A = j and Li]−Pr[A = i and Li]. Let E low be the event that all agents other

than i have quantile lower then n−1
n . Let E low be its complement, the probability that at least one

agent other than i has a high quantile. We have:(
Pr
[
A = j and Li and E low]+ Pr

[
A = j and Li and E low

])
−
(

Pr
[
A = i and Li and E low]+ Pr

[
A = i and Li and E low

])
.

Notice that Pr
[
A = i and Li and E low

]
= 0 because if agent i has a low quantile and at least one

other agent has a high quantile, i cannot receive the item. Additionally, by symmetry,

Pr
[
A = j and Li and E low] = Pr

[
A = i and Li and E low],

since when all agents have low quantiles, i and j are equally likely to receive the item. Hence, the
probability in (2) simplifies to Pr

[
A = j and Li and E low

]
= Pr

[
A = j|Li and E low

]
·Pr
[
Li and E low

]
.

The first term is equal to 1/(n − 1), since j is equally likely to receive the item compared to any
agent. The second term is n−1

n ·
(

1−
(
n−1
n

)n−1). Observing that
(
n−1
n

)n−1
=
(
1− 1

n

)n−1 ≥ 1
e , we

have that the probability in (2) is at most 1
n(1− 1

e ).
Overall, we have shown that

E[vi,t · I[A = i]]− E[vi,t · I[A = j]] ≥ E [vi,t | Hi]
1

n− 1
− E [vi,t | Li]

e− 1

en

≥ e− 1

en
(E [vi,t | Hi]− E [vi,t | Li])

≥ 1

2n
(E [vi,t | Hi]− E [vi,t | Li])

=
1

2n
(E [Xi | Hi]− E [Xi | Li])

It remains to show that the value of i forATi is at least her value forATj plus 1
4n (E [Xi | Hi]− E [Xi | Li])

with high probability. Towards this, notice that the value of i for ATi minus her value for ATj is the
sum of T i.i.d. random variables, supported in [−1, 1], whose expectation is at least 1

2n (E [Xi | Hi]− E [Xi | Li]),
as we’ve established so far. Hoeffding’s inequality then implies that the probability that this dif-
ference is less than b = 1

4n (E [Xi | Hi]− E [Xi | Li]) is at most 2 exp
(
− b2T

2

)
, i.e., exponentially

small, since b is a constant. Observing that E [Xi | Hi] ≥ E [Xi | Qi ≥ 1/2] and E [Xi | Li] ≤ E[Xi]
concludes the proof.

A.2 Proof of Lemma 10

Fix such an ε, δ, τ , and `. We claim that a sufficient condition for ε-accuracy is that all agents
accept an item with quantile within q∗ ± ε/(2n). Indeed, note that any sampled quantile outside
this range will be classified (as high vs low) correctly. With such an error tolerance, the probability
a specific agent’s quantile (for a fresh item) falls within this range is at most ε/n. Via a union
bound over all n agents, the probability that no agent has a quantile (for a fresh item) within this

24



range is at least 1− ε. Hence, all that needs to be shown is that with probability 1− δ, all agents
accept an item and the accepted item has quantile within the allowed range.

Since there are τ trials, there are at most nτ items tested across all agents. We show that ` is
large enough such that with probability 1−δ/2, all these tests are within ±ε/(6n) of the true value.
Using Hoeffding’s inequality, the probability any specific test fails is at most

2 exp

(
−2
( ε

6n

)2
· `
)

= 2 exp

(
− ε2

18n2
· `
)
≤ 2 exp

(
− ln

(
4τn

δ

))
=

δ

2τn
,

a union bound over all nτ tests yields the required probability.
Note that under the condition that all the tests are this accurate, since the threshold for accep-

tance is ±ε/(3n), any accepted item will be within ±ε/(2n) of q∗, as needed. What remains to be
shown is that each agent will, with reasonable probability, accept an item. To that end, we need to
show that with probability 1− δ/2, all agents will test an item that is within ±ε/(6n) of q∗. If such
an item is tested and the test is accurate, the empirical estimate of its quantile is within ±ε/(3n),
and the item would hence be accepted. A union bound will then tell us that both of these events
would occur with probability 1− δ.

Towards proving that each agent will test an item within ±ε/(6n) of q∗ with probability 1−δ/2,
we use a union bound, showing that each agent individually will not sample such an item with
probability at most δ/(2n). In each of τ trials, the probability such an item is sampled is ε/(3n).
Hence, the probability no such item is sampled is

(
1− ε

3n

)τ . We then have that

(
1− ε

3n

)τ
=

(
1− 1

3n
ε

)τ

=

(1− 1
3n
ε

) 3n
ε

τ · ε
3n

≤
(
e−1
)τ · ε

3n (1− 1/x)x ≤ e−1 for all x ≥ 1

= e−τ ·
ε
3n

≤ e− ln(2n/δ)

=
δ

2n
,

as needed.

A.3 Proof of Lemma 11

First, we prove that for all k ≥ 10n, epoch k is εk-accurate with probability δk for εk = 3n/k2 and
δk = 2ne−k. Since k > 3n these are valid values between 0 and 1. Hence, we simply need to check
that the τ and ` inequalities hold for the number of trials and number of test items specified in
Algorithm 2. For arbitrary epoch k,

ln(2n/δk)

εk/(3n)
= ln

(
ek
)
k2 = k3,
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so the number of trials is sufficiently large. Further,

18n2

ε2k
ln

(
4k3n

δk

)
= 2k4 · ln

(
2k3ek

)
≤ 2k4 · ln

(
k4ek

)
(k ≥ 2)

= 2k4 · (k + 4 ln k)

≤ 2k4 · (k + 4k) (ln k < k)

≤ 10k5

≤ k6. (k ≥ 10)

Recall that k(t) is defined as the epoch of item t. As in the proof of Lemma 7, we characterize
deviations from the ideal algorithm in four ways.

1. Item t was allocated in one of the first 10n− 1 epochs; that is, k(t) < 10n.

2. Item t was allocated during the sampling phase of epoch k(t) ≥ 10n.

3. Item t was allocated during the ranking phase of epoch k(t) ≥ 10n, which was εk(t)-accurate.

4. Item t was allocated during the ranking phase of epoch k(t) ≥ 10n, which was not εk(t)-accurate.

We say an item t is incorrect (incorrectly allocated) when it is given to an agent with non-
maximum quantile for it. We show that the number of mistakes in each category are bounded by
1020n19, 2T 5/9, 7nT 17/18 and 1.3·1016n respectively, with high probability. This implies, via a union
bound, that the total number of mistakes is at most the sum of these quantities, or O(poly(n) ·
T 17/18), with high probability.

The number of items in category 1, is at most

10n∑
k=1

k9 + k18 ≤ (10n)10 + (10n)19 ≤ 1020n19

Notice that T ≥
∑k(T )−1

k=1 k9 + k18 ≥ (k(T )− 1)18, and therefore k(T ) ≤ 2T 1/18.
For the second category, since k(T ) ≤ 2T 1/18, the total number of items in the sampling phase

is (with probability 1) upper bounded by

k(T )∑
k=1

k9 ≤ k(T )10 ≤ 2T 5/9.

For the third category, note that each item t in this category has probability εk(t) of being
incorrect. The expected number of mistakes is at most

k(T )∑
k=10n

εk(t)k
18 =

k(T )∑
k=10n

3nk16 ≤ 3nk(T )17 ≤ 6nT 17/18.

Using Hoeffding’s inequality we get that with high probability the number of mistakes is at most
7nT 17/18, since a deviation of nT 17/18 occurs with probability at most exp

(
−2n2T 17/9/T

)
=

exp
(
−2n2T 8/9

)
.
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For the fourth category, the expected number of items in this category is at most

k(T )∑
k=10n

δkk
18 = 2n

k(T )∑
k=10

k18

ek
≤ 2n

∞∑
k=1

k18

ek
≤ 1.3 · 1016n.

Using Markov’s inequality we have that the number of mistakes is at most 1.3 · 1016n ln(T ) with
probability at least 1− ln(T ), i.e., with high probability.

A.4 Proof of Theorem 9

The proof is nearly identical to the proof of Theorem 5. Fix a distribution D with CDF F and let
X be a random variable with distribution D. Fix some ε to be (1 − 1/e) − ε welfare maximizing.
Let ET1 be the event that the maximum social welfare at time T is at least 1/2 · E[X] · T , let ET2
be the event the ideal threshold algorithm is c-strongly-EF for c = (E[X | F (X)≥1/2]−E[X])

4n , let ET3 be
the event that the ideal threshold algorithm is a (1− 1/e)2 − ε/2 approximation to welfare, and let
ET4 be the event that Algorithm 2 differs from the ideal threshold algorithm on at most f(T ) items
from Lemma 11. We first claim that ET1 ∩ ET2 ∩ ET3 ∩ ET4 occurs with high probability in T . Note
that Lemmas 2, 1 ,and 11 tell us each of ET2 , ET3 , and ET4 occur with high probability. For ET1 , the
maximum value for each item is in expectation at least the expected value for a single agent E[X].
Hence, a Chernoff bound tells us ET1 occurs with probability at least 1 − exp

(
−E[X]T

8

)
, i.e., with

high probability. The claim holds because the intersection of a finite number of high probability
events occurs with high probability.

Next, note that for sufficiently large T , since f(T ) ∈ o(T ), f(T ) ≤ (E[X | F (X)≥1/2]−E[X])
8n ·T and

f(T ) ≤ ε/4·E[X]·T . Fix such a sufficiently large T . We show that conditioned on ET1 ∩ET2 ∩ET3 ∩ET4 ,
both EF and ((1 − 1/e)2 − ε)-welfare hold. Recall that a “difference” between Algorithm 2 and
the ideal threshold algorithm refers to different distributions over the agents that get some item
(i.e., a different randomized allocation). In order to make statements about envy-freeness and
efficiency we need a way to argue about the differences between the algorithms ex-post. However,
notice that without loss of generality we can couple the decision made by the two algorithms when
randomized allocation is the same; that is, when Algorithm 2 does not differ from the ideal threshold
algorithm we can assume without loss of generality that the agent who gets the item is the same.
Let AIT = (AIT1 , . . . , AITn ) be the allocation of the ideal threshold algorithm and A = (A1, . . . , An)
be the allocation of Algorithm 2. Beginning with envy-freeness, we have that for all pairs of agents
i and j,

vi(Ai) ≥(ET4 ) vi(A
IT
i )− f(T )

≥(ET2 ) vi(A
IT
j )− f(T ) +

(E[X | F (X) ≥ 1/2]− E[X])T

4n

≥(ET4 ) vi(Aj)− 2f(T ) +
(E[X | F (X) ≥ 1/2]− E[X])T

4n
≥ vi(Aj),

so the allocation is envy-free. Let A∗ be a welfare-maximizing algorithm. For the welfare approxi-
mation, we then have

sw(A)

sw(A∗)
=

sw(AIT )− (sw(AIT )− sw(A))

sw(A∗)
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≥(ET4 ) sw(AIT )− f(T )

sw(A∗)

=
sw(AIT )

sw(A∗)
− f(T )

sw(A∗)

≥(ET3 ) (1− 1/e)2 − ε/2− f(T )

sw(A∗)

≥(ET1 ) (1− 1/e)2 − ε/2− f(T )

1/2 · E[X] · T

≥ (1− 1/e)2 − ε/2− ε/4 · E[X] · T
1/2 · E[X] · T

= (1− 1/e)2 − ε,

as needed.

A.5 Proof of Theorem 13

The proof of envy-freeness for each algorithm is nearly identical to Theorems 5 and 9 respectively;
we show it here for completeness. We focus on Algorithm 1. The proof for Algorithm 2 goes through
identically with all occurances of quantile maximization replaced with the ideal threshold algorithm
and all occurances of Lemma 7 replaced with Lemma 11.

Fix a distributions D1, . . . , Dn with CDFs F1, . . . , Fn and let Xi be a random variable with
distribution Di. Fix some ε to be (1/e − ε)-PO. Let E = mini∈N E[Xi] be the minimum expected
value for all agents. Let ET1 be the event that each agent i’s value for their bundle at time T
is at least 1/(2n) · E · T , let ET2 be the even that quantile maximization is c-strongly-EF for c =

mini∈N
(E[Xi | Fi(Xi)≥1/2]−E[Xi])

4n , let ET3 be the event that quantile maximization is a (1/e−ε/2)-PO,
and let ET4 be the event that Algorithm 1 differs from quantile maximization on at most f(T ) items
from Lemma 7. We first claim that ET1 ∩ ET2 ∩ ET3 ∩ ET4 occurs with high probability in T . Note
that Lemmas 1, 3, and 7 tell us ET2 , ET3 , and ET4 each occur with high probability, respectively. For
ET1 , note that under quantile maximization, the probability each agent i receives an item is exactly
1/n and the expected value conditioned on receiving the item is at least E[Xi] ≥ E. Hence, the
expected contribution of each item to vi(Ai) is at least 1/n ·E. A Chernoff bound then tells us ET1
holds for agent i with probability at least 1 − exp

(−ET
8n

)
. A union bound over all agent’s tells us

this occurs simultaneously for all agents with probability at least 1 − n exp
(−ET

8n

)
, i.e., with high

probability. The claim holds because the intersection of a finite number of high probability events
occurs with high probability.

Next, note that for sufficiently large T , since f(T ) ∈ o(T ), f(T ) ≤ mini∈N
(E[Xi | Fi(Xi)≥1/2]−E[Xi])

8n ·
T and f(T ) ≤ ε/(4n) · ET . Fix such a sufficiently large T . We show that conditioned on
ET1 ∩ET2 ∩ET3 ∩ET4 , both EF and (1/e− ε)-PO hold. Let AQM = (AQM1 , . . . , AQMn ) be the allocation
of quantile maximization and A = (A1, . . . , An) be the allocation of Algorithm 2. Beginning with
envy-freeness, we have that for all pairs of agents i and j,

vi(Ai) ≥(ET4 ) vi(A
QM
i )− f(T )

≥(ET2 ) vi(A
QM
j )− f(T ) + min

i∈N

(E[Xi | Fi(Xi) ≥ 1/2]− E[Xi])

4n

≥(ET4 ) vi(Aj)− 2f(T ) + min
i∈N

(E[Xi | Fi(Xi) ≥ 1/2]− E[Xi])

4n
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≥ vi(Aj),

so the allocation is envy-free. Next, we show that for all agents vi(Ai)

vi(A
QM
i )

≥ 1 − ε/2. Since AQM is

(1/e− ε/2)-PO under ET3 , this implies that A is a (1/e− ε/2)(1− ε/2) ≥ 1/e− ε approximation to
PO as well.

To that end, for each agent i we have

vi(Ai)

vi(A
QM
i )

=
vi(A

QM
i )− (vi(A

QM
i )− vi(Ai))

vi(A
QM
i )

= 1−
(vi(A

QM
i )− vi(Ai))
vi(A

QM
i )

≥(ET4 ) 1− f(T )

vi(A
QM
i )

≥(ET1 ) 1− f(T )

ET/(2n)

≥ 1− ε · ET/(4n)

ET/(2n)

= 1− ε/2,

as needed.
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