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We present a general method for obtaining strong bounds for discrete optimization problems that is based

on a concept of branching duality. It can be applied when no useful integer programming model is available,

and we illustrate this with the minimum bandwidth problem. The method strengthens a known bound

for a given problem by formulating a dual problem whose feasible solutions are partial branching trees. It

solves the dual problem with a “worst-bound” local search heuristic that explores neighboring partial trees.

After proving some optimality properties of the heuristic, we show that it substantially improves known

combinatorial bounds for the minimum bandwidth problem with a modest amount of computation. It also

obtains significantly tighter bounds than depth-first and breadth-first branching, demonstrating that the

dual perspective can lead to better branching strategies when the object is to find valid bounds.
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1. Introduction

Establishing bounds on the optimal value of a problem is an essential tool for combinatorial

optimization. In a heuristic method, a good bound provides an indication of how close the

solution is to optimality. In an exact algorithm, a known bound can allow one to prove

optimality of a feasible solution found early in the search.

We propose a general method for obtaining optimization bounds that is based on the

concept of a branching dual. It can, in particular, be applied to discrete optimization

problems for which no useful integer programming models or cutting planes are available.

It begins with a known bound, perhaps a weak one, and builds a branching tree that

strengthens the bound as much as desired.

To obtain a good bound more quickly, we reconceive the branching process as local search

in a dual space. We regard partial branching trees as dual solutions of the optimization

problem and obtain neighboring solutions by adding branches to the tree. The value of a
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dual solution is defined to be the bound on the optimal value that is proved by the tree.

If the objective of the primal problem is to minimize, the dual problem seeks to maximize

this bound.

This results in a different kind of branching scheme than ordinarily used in methods

that seek an optimal solution. Such methods typically attempt to solve both a primal and

dual problem simultaneously. They branch in such a way as to find good feasible solutions,

while simultaneously seeking to prove a tight bound on the optimal value. It is difficult to

design a branching strategy that is effective at both tasks. We propose instead to focus

on the dual problem by constructing trees that are specifically designed to discover good

bounds.

The branching dual is clearly a strong dual, because a complete branching tree proves a

bound equal to the optimal value. In practice, however, we seek a suboptimal solution of

the dual that yields a good bound after a reasonable amount of computation. We do so by

designing an effective local search procedure that takes advantage of problem structure.

This affords an alternative perspective that may yield a bound more quickly than standard

branching procedures.

The approach is somewhat similar to a Lagrangian method in which bounds are obtained

by partially solving the Lagrangian dual, perhaps by subgradient optimization. Yet there

are key differences. Because there is no duality gap, the branching dual can deliver a

bound as tight as desired if we invest sufficient computational resources. Furthermore,

there is no need for inequality constraints in the problem formulation (only inequality and

equality constraints can be dualized in a Lagrangian method), and no need to compute a

subgradient or adjust the stepsize.

To solve the branching dual, we propose a worst-bound local search heuristic that

examines neighboring solutions obtained by branching at nodes with the worst relaxation

value. It is based on the principle that one should move to a neighboring solution that has

some possibility of being better than the current solution.

The heuristic can be executed with or without a predetermined rule for selecting variables

on which to branch. If the variable selection rule is not fixed in advance, the heuristic

examines neighboring solutions (trees) that result from various choices of the branching

variables. The search can be designed to exploit the characteristics of the problem at hand,
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much as is done with local search methods in general. We will see that a relatively simple

local search procedure can substantially improve the bound.

We prove the following optimality properties for the worst-bound heuristic. Let a variable

selection rule be path-based when the choice of variable on which to branch at a given

node depends only on the choices on the path from the root to the node. For any given

path-based variable selection rule, the worst-bound heuristic is optimal in two senses: it

obtains any desired bound with a tree of minimum size, and it obtains the tightest possible

bound that can be obtained from a tree of a given size. This also holds for any depth-based

variable selection rule, which is a special case of a path-based rule in which the choice of

branching variable at a node depends only on the depth of the node in the tree. We also

prove a more general result: given any branching tree that proves a given bound, there is

a variable selection rule for which the worst-bound heuristic proves the same bound by

generating a subtree of that branching tree.

The bound proved by a partial search tree is a function of the relaxation values computed

at nodes of the tree. The relaxation value at a node is a bound on the value of any solution

obtained in a subtree rooted at that node. If the problem has a tractable continuous

relaxation, as in linear integer programming, we can obtain a relaxation value simply by

fixing the variables on which the search has branched so far and solving the continuous

relaxation that results. Relaxation values can often be obtained, however, without a

continuous relaxation. If there is a known combinatorial bound for a given problem, we

need only determine how to alter the bound to reflect the fact that certain variables have

been fixed. This defines the relaxation values at nodes and allows a local search to improve

the original bound, perhaps significantly.

We illustrate this strategy with the minimum bandwidth problem, for which no practical

integer programming model is known. Bounds for this problem have been studied at least

since 1970, when Chvátal introduced his famous density bound for the problem (Chvátal

1970). Since the density bound is NP-hard to compute, polynomially computable bounds

have been proposed, such as those of Blum et al. (1998) and Caprara and Salazar-González

(2005). We obtain relaxation values by adapting the Caprara–Salazar-González bound to

the case where some variables are fixed.

We find in computational testing that the worst-bound heuristic delivers bounds that

are not only better than the three bounds just mentioned, but that improve the Caprara–

Salazar-González bound significantly faster than depth-first and breadth-first branching
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trees that use the same relaxation values. We obtain these results both with and without a

predefined variable selection rule. In fact, when variable selection is not fixed in advance,

a straightforward local search heuristic can significantly improve the bounds. We conclude

that the dual perspective proposed here can lead to better branching strategies when the

object is to find valid bounds.

The paper is organized a follows. After a brief survey of related work, we define the

branching dual and develop the idea of a relaxation function, which allows dual solutions to

prove bounds on the optimal value. We then describe the worst-bound heuristic and show

that it is optimal in the senses described above. The paper concludes with a computational

study of the minimum bandwidth problem and remarks on future research.

2. Related work

A number of branching strategies have been proposed over the years, but almost always

with the aim of solving a problem rather than obtaining a good dual bound quickly. Depth-

first search immediately probes to the bottom of the tree and may therefore discover

feasible solutions early in the search. It requires little space but tends to make slow progress

toward improving the dual bound. Breadth-first search explores all the nodes on one level

before moving to the next. It finds the best available bound down to the current depth but

requires too much space for practical implementation.

Primal/dual node selection strategies attempt to obtain some of the advantages of both

depth-first and breadth-first search. Iterative deepening (Korf 1985) conducts complete

depth-first searches to successively greater depths, each time re-starting the search. It

inherits the bound-proving capacity of breadth-first search while avoiding its exponential

space requirement, but the amount of work still grows exponentially with the depth.

Limited discrepancy search (Harvey and Ginsberg 1995) conducts a depth-first search in a

band of nodes of gradually increasing width. Iteration 0 is a probe directly to the bottom

of the tree. Iteration k is a depth-first search in which at most k variables are set to values

different from those in iteration 0. This provides a bound at least as good as breadth-first

search to level k, but the size of the search tree grows exponentially with k.

Cost-based branching uses relaxation values at nodes as a guide to branching. It is

popular in mixed-integer solvers, where the relaxation values are obtained by solving (or

estimating the solution value of) a continuous relaxation of the problem. The two basic
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strategies are worst-first and best-first node selection. Worst-first branching explores a node

with the largest relaxation value first (if we are minimizing). Strong branching (Applegate

et al. 2007, Bixby et al. 1995) might be viewed as similar to a worst-first strategy because

it selects a branching variable that, when fixed, causes a large increase in the relaxation

value. Pseudocosts (Benichou et al. 1971, Gautier and Ribier 1977) are often used instead of

exact relaxation values to save computation time. Worst-first branching is slow to improve

the dual bound, because it leaves nodes with small relaxation values open longer. This

is of relatively little concern in branch-and-bound methods, because they use an upper

bound and relaxation values at nodes (rather than the overall dual bound) to prune the

search tree. However, worst-first branching is a poor strategy for quickly obtaining a good

dual bound. Further discussion of these and related branching strategies can be found in

Achterberg et al. (2005), Hooker (2012) and Linderoth and Savelsbergh (1999).

Best-first branching, by contrast, tends to improve the overall dual bound more quickly,

because it explores nodes with the smallest relaxation value first. It is nondeterministic

because there may be multiple nodes with the same relaxation value. It is shown in

Achterberg (2007) that when the variable selection rule is fixed, there exists a best-first

node selection strategy that solves a given problem instance in a minimum number of

nodes. This, of course, leaves open the question of which node selection strategy achieves

this result. There is also the larger issue of which variable selection rule is best.

The worst-bound heuristic proposed here is based on the same idea as best-first

branching, but it differs in two ways. We call it “worst-bound” rather than “best-first”

to reflect these differences and our emphasis on the dual bound. One difference is that

it simultaneously explores the children of all nodes with the smallest relaxation value,

thus removing the non-determinism of best-first branching. The second difference is that

it uses local search to select branching variables when the variable selection rule is not

predetermined. Because we are interested in bounding the optimal value rather than finding

an optimal solution, we also obtain stronger optimality results than Achterberg (2007),

namely those described above.

Failure-directed search, recently proposed by Viĺım et al. (2015) for scheduling problems,

is similar to worst-bound branching in that it seeks to prove a bound (or infeasibility)

rather than find a solution. However, the mechanism is quite different, because it makes

branching “choices” that are most likely to lead to infeasibility, based on the structure
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of the scheduling problem. A “choice” is normally a higher-level decision, such as which

currently unscheduled job to perform first. Orbital branching (Ostrowski et al. 2011) is

designed for integer programming problems with a great deal of symmetry. Groups of

equivalent variables are used to partition the feasible region, so as to reduce the effects of

symmetry. It is unclear how either of these methods can be extended to a general branching

method for optimization problems.

Branching decisions can also be based on machine learning techniques. This possibility

has been investigated for some years for satisfiability solvers and recently for mixed integer

programming solvers (Alvarez et al. 2017, Khalil et al. 2016).

The idea of branching duality was introduced for purposes of sensitivity analysis in

Hooker (1996) and Dawande and Hooker (2000). It is further developed in Hooker (2012),

which suggests using a local search heuristic to solve the branching dual so as to obtain

a bound on the optimal value. In the present paper, we carry out this suggestion by

formulating a specific heuristic, proving its optimality properties, and applying it to the

minimum bandwidth problem.

3. The Branching Dual

The branching dual is most naturally defined for a problem with finite-domain variables.

We therefore consider an optimization problem of the form

min {f(x) | x∈ F, x∈D} (1)

where x= (x1, . . . , xn), F is the feasible set, D=Dx1×· · ·×Dxn, and each Dxj is the finite

domain of variable xj.

A (partial or complete) branching tree for (1) can be defined as follows. Let T be a rooted

tree, and for any node u of T , let P [u] be the path from the root to node u. We will say

that u is on level j of T when P [u] contains j − 1 arcs. A terminal node is any node on

level n+ 1. Then T is a branching tree if

(a) every nonterminal node u is labeled with a variable xj(u) that designates the variable

branched on at u, and the nodes in P [u] have distinct labels;

(b) the arcs from any nonleaf node u to its children are associated with distinct values in

xj(u)’s domain.
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The value associated with an arc leaving u is viewed as an assignment to xj(u). The arcs

in P [u] define a partial assignment x[u] if u is nonterminal and a complete assignment if u

is terminal.

Each branching tree T establishes a lower bound θ(T ) on the optimal value of (1), in a

manner to be discussed in the next section. We will regard the tree T as a dual solution

of (1), and θ(T ) as its value. The branching dual of (1) seeks a tree with maximum value:

max {θ(T ) | T ∈ T } (2)

where T is the set of branching trees for (1). The branching dual maximizes the bound

that can be obtained from a branching tree.

4. The Relaxation Function

To relate the structure of a tree T to the bound θ(T ), we suppose that each node u of

T has a relaxation value cu. This is a lower bound on the objective function value of any

solution of (1) consistent with the partial assignment x[u]. We assume the following:

(a) The relaxation value is nondecreasing with tree depth, so that ct ≤ cu when t is a

parent of u.

(b) The relaxation value is a sharp bound at any terminal node u, meaning that cu is

exactly the value of the corresponding assignment x[u].

(c) The relaxation value is a function solely of the partial assignment x[u], so that we can

write cu = c(x[u]), where c(·) is the relaxation function.

Condition (c) is useful because it implies that the relaxation value of u does not change

when nodes are added to the tree. This will allow us to prove various properties of the

dual and algorithms for solving it.

Let an open node u of T be a nonterminal node at which branching is still possible; that

is, u has fewer than |Dxj(u)| children. A node that is not open is closed. Thus we have the

following.

Lemma 1. A branching tree T for (1) establishes a bound θ(T ) equal to the minimum

of cu over all terminal and open nodes u in T .

The relaxation values can be obtained in any number of ways, so long as they satisfy

(a)–(c). They can be values of a linear programming relaxation, perhaps strengthened

with cutting planes, or they can reflect combinatorial bounds, as in the discussion of the
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minimum bandwidth problem to follow. They can also be strengthened by domain filtering

and constraint propagation, as in constraint programming.

We will assume that any feasibility checks are encoded in the relaxation value, so that

cu =∞ whenever infeasibility is detected at node u. We will say that u is infeasible when

cu =∞ and feasible when cu <∞. An infeasible node is more accurately called a provably

infeasible node, but for brevity we will refer to it simply as an infeasible node.

The branching dual is a strong dual because θ(T ) is the optimal value of (1) when T is

a complete branching tree. T is complete when every node of T is closed or infeasible.

Theorem 1. If T is a complete branching tree for (1), then θ(T ) is the optimal value

of (1).

Proof. Suppose first that (1) is feasible, and let x∗ be an optimal solution. Let P [u]

be a longest path in T for which x[u] is consistent with x∗. Suppose u is nonterminal.

If u is closed, some arc leaving u assigns x∗j(u) to xj(u), which is impossible because P [u]

has maximal length. Also u cannot be infeasible, because x∗ is feasible. Therefore, u is

terminal, which implies cu = θ(T ) = f(x∗). If (1) is infeasible and thus has value ∞, any

terminal node of T must be infeasible. Since any open node is infeasible, Lemma 1 implies

that θ(T ) =∞. �

Corollary 1. The branching dual is a strong dual.

5. Solving the Dual

The branching dual can be solved by a local search algorithm that moves from the current

solution to a neighboring solution. In general, a neighbor of T could be any tree obtained

by adding children to open nodes and/or removing leaf nodes. We will suppose that

the algorithm only adds nodes and does not remove them, because this prevents cycling

and ensures that the number of iterations is bounded by the number of possible nodes.

In addition, the monotonicity of the relaxation function implies that the resulting dual

values are nondecreasing. Because there is no cycling, uphill search eventually finds an

optimal solution. This can still be regarded as local search in the sense that it searches a

neighborhood of the current solution in each iteration.

It remains to specify which nodes to add in each iteration. Recall that the value of

the current dual solution is governed by the worst (smallest) relaxation value of an open
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or terminal node u. If u is terminal, the heuristic terminates with the optimal bound

cu. Otherwise, we propose adding nodes that can actually improve the current bound.

Expanding a node with a relaxation value better than the worst cannot improve the bound,

because it leaves open nodes with relaxation values equal to the current bound. However,

expanding all nodes with the worst relaxation value can improve the bound. We will refer

to this as a worst-bound heuristic.

The heuristic is stated more precisely in Algorithm 1, in which T is the current dual

solution. An eligible node is an open node u with relaxation value cu = θ(T ). Note that

every dual solution created by the heuristic is a saturated tree, meaning that all of its

nonleaf nodes are closed.

Algorithm 1: Worst-bound heuristic

Let T initially consist of the root node;

while some open or terminal node in T is feasible do

if some terminal node u in T has relaxation value cu = θ(T ) then

stop with the optimal bound θ(T );

else

for each eligible node u in T do

select a label xj(u) for u that does not occur in path P [u];

add to T all children of u to create the next dual solution;

end

end

end

Problem (1) is infeasible;

The heuristic must somehow specify how to select a label for each eligible node u.

If a path-based variable selection rule is determined in advance, the labels are likewise

predetermined, because the label at a node u is a function of the labels on the other nodes

along the path P [u]. As an example, Fig. 1 shows how the worst-bound heuristic may

proceed when the variable selection rule is not only path-based but depth-based (i.e., each

node on level j receives label xj for some indexing of the variables).
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Figure 1 Three iterations of the worst-bound heuristic for a layered variable ordering. Each node is inscribed

with its relaxation value. All variables are binary: a solid arc indicates assigning the value 1, a dashed

arc 0. The shaded nodes will be examined in the next iteration.

If the local search does not use a predetermined path-based variable selection rule, it

must select labels for eligible nodes in some other fashion. A greedy heuristic is the simplest

approach, and we use it here. For each eligible node u, examine a subset of the variables that

are available to label u, and select one that will maximize the minimum relaxation value

of u’s children. The subset of variables considered depends on the characteristics of the

problem at hand. If the subset selected depends only on P [u], the resulting variable selection

rule is path-based, but it may be better than a path-based selection rule determined in

advance. We will find that this is in fact the case. In addition, the worst-bound heuristic

is optimal with respect to the path-based selection rule obtained at runtime.

The worst-bound heuristic is polynomial in the number of possible nodes, because the

number of iterations is bounded by the number of nodes, and each iteration requires, at

worst, examining each node of the current tree, and for each node, the children that result

from selecting each possible label.

6. Properties of the Worst-Bound Heuristic

For any given path-based selection rule, the worst-bound heuristic is optimal in two senses:

it finds the smallest branching tree that yields a given bound, and it finds the tightest

possible bound that can be obtained from a tree of a given size. We will derive these facts

from the following more general result. Let a branching tree T ′ be a branching subtree of

branching tree T if T ′ is a subtree of T and the node labels in T ′ are the same as in T .

Theorem 2. Given any branching tree T for (1) that establishes a bound λ, there is a

path-based variable selection rule for which the worst-bound heuristic creates a branching

subtree of T that establishes the same bound λ.
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Proof. We wish to show that for some path-based branching rule, the worst-bound

heuristic constructs a branching subtree T ′ of T that establishes the bound λ. We do so

by first removing nodes from T in a particular order until only the root node remains, and

then constructing T ′ by showing that the worst-first heuristic restores removed nodes in

reverse order until λ is proved. We denote by λ1, . . . , λk the distinct relaxation values of

the nodes of T that are less than or equal to λ, where λk = λ and λ1 < · · ·< λk. We next

clean up T by removing all leaf nodes whose parents have relaxation value of λk or higher,

and repeating until no such leaf nodes remain. This yields a branching subtree Tk of T

that still establishes bound λk. Furthermore, Tk is saturated, because if it contained an

open nonleaf node u, then either cu <λk or cu ≥ λk. In the former case, Tk would not prove

the bound λ, and in the latter case, u would be a leaf node because its children would be

removed. Now remove from Tk all leaf nodes whose parents have relaxation value λk−1, and

repeat until no such nodes remain. This yields a saturated tree Tk−1 that establishes the

bound λk−1. In similar fashion, remove nodes to obtain trees Tk−2, . . . , T1 (T1 will consist

of the root node only). Since trees T1, . . . , Tk are saturated, they can now be reconstructed

by adding nodes according to the worst-bound heuristic, provided each node u is given

the label it has in Tk. This defines a path-based variable selection rule in which the label

assigned to each u is determined by the labels on P [u]. If we let T ′ = Tk, T
′ proves bound

λ and is a branching subtree of T , and the theorem follows. �

Theorem 2 provides no guidance on how the heuristic should label nodes to obtain a

desired bound. However, if a path-based variable selection rule is defined in advance, the

labels are determined by previous branches, as noted in the previous section. In this case,

we have the following.

Corollary 2. Suppose the worst-bound heuristic using a given path-based variable

selection rule is terminated at a point where the current tree contains N nodes. This tree

establishes the tightest bound that can be obtained from a tree of N nodes that uses the

same variable selection rule.

Proof. Suppose, to the contrary, that T is the tree of size N obtained from the worst-

bound heuristic, and T ′ is a tree of size N that establishes a bound θ(T ′) > θ(T ). By

Theorem 2, the worst-bound heuristic yields a branching subtree T ′′ of T ′ that establishes

the bound θ(T ′), so that θ(T ′′) ≥ θ(T ′). But since T and T ′′ use the same path-based
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variable selection rule, and the size of T ′′ is at most N , T ′′ is a branching subtree of T . So

we have θ(T )≥ θ(T ′′)≥ θ(T ′)> θ(T ), a contradiction. �

Corollary 3. Suppose the worst-bound heuristic using a given path-based variable

selection rule is terminated as soon as it proves a bound of λ. The resulting tree is the

smallest tree that establishes the bound λ and uses the same variable selection rule.

Proof. Suppose, to the contrary, that T is the tree obtained from the heuristic, and T ′ is

a smaller tree with θ(T ′) = λ. By Theorem 2, the worst-bound heuristic yields a branching

subtree T ′′ of T ′ that establishes the bound λ. But since T and T ′′ use the same path-based

variable selection rule, T must be a branching subtree of T ′′, because it is the first tree

obtained by the worst-bound heuristic that proves λ. Thus if we let size(T ) denote the size

of T , we have size(T )> size(T ′)≥ size(T ′′)≥ size(T ), a contradiction. �

7. The Minimum Bandwidth Problem

The minimum bandwidth problem asks for a linear arrangement of the vertices of a graph

that minimizes the length of the longest edge, where the length of an edge is measured by

the distance it spans in the arrangement. That is, given a graph G= (V,E), the problem

is to find

φ(G) = min
τ

max
(i,j)∈E

|τi− τj| (3)

where τ is any permutation of 1, . . . , |V |, and τi is the position of vertex i in the

arrangement. A graph with five vertices may be seen in Fig. 2, together with two of its

linear arrangements. The first linear arrangement has value 3 while the second has value

2 and is optimal.

a

c b d

e

a b c d e
1 11

2

2
3

a c b e d
1

1

1

2 2

2

Figure 2 A graph and two linear arrangements of its vertices with edge lengths indicated.

Several graph theoretic lower bounds have been derived for this problem. Perhaps the

best known is the density bound of Chvátal (1970). Let d(s, t) denote the distance between
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vertices s, t ∈ V , defined as the length of a shortest path connecting s and t, where the

length of a path is the number of edges in it. Given vertex sets S,T ⊆ V , let the distance

from S to T be d(S,T ) = max{d(s, t) : s∈ S, t∈ T}, and let d(S) = d(S,S) be the diameter

of S. The density bound is defined to be

β(G) = max
S⊆V

⌈
|S| − 1

d(S)

⌉
= max

S⊆V
min
v∈S

⌈
|S| − 1

d(v,S)

⌉
. (4)

It is clear from the reformulation in (4) that calculating β(G) is equivalent to finding the

largest clique in G and is therefore NP-hard.

Blum et al. (1998) propose a 1/2-approximation of the density bound,

α(G) = max
v∈V

max
S⊆V
v∈S

⌈
|S| − 1

2d(v,S)

⌉
= max

v∈V

d(v,V )
max
k=1

⌈
|Nk(v)| − 1

2k

⌉
, (5)

where Nk(v) = {u ∈ V : d(u, v)≤ k} is the k-neighborhood of v. The reformulation shows

that α(G) is computable in time O(nm) by viewing every vertex as the root of a layered

graph.

Caprara and Salazar-González (2005) similarly propose a bound computable through

layered graphs,

γ(G) = min
v∈V

max
S⊆V
v∈S

⌈
|S| − 1

d(v,S)

⌉
= min

v∈V

d(v,V )
max
k=1

⌈
|Nk(v)| − 1

k

⌉
. (6)

It places v in the first position of an arrangement and greedily places all the vertices in

Nk(v) directly after it in the arrangement. This bound can also be computed in polynomial

time. As Caprara and Salazar-González point out, this bound has the advantage that it

can be naturally be adapted to the case when some vertices have fixed positions, as in a

branching tree. We will exploit this advantage in the next section.

8. Branching Dual for Minimum Bandwidth

To formulate the branching dual of the minimum bandwidth problem, it is convenient to

state the problem using different variables than in (3). We let xi be the vertex that is

placed in position i of the arrangement. Then the problem is

min
x

max
i,j

(xi,xj)∈E

|i− j| (7)

where x= (x1, . . . , xn) is a permutation of 1, . . . , n and n= |V |.
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We construct branching trees by branching on the variables xi. We use a branching order

that alternates between assigning vertices to the left and right ends of the arrangement,

because this will be convenient for the relaxation function described below. Thus at each

node t in level i, the partial assignment x[t] fixes variables x1, xn, x2, xn−1, x3, xn−2, . . . , xi.

Let L= {u1, . . . , u|L|} be the set of vertices that are assigned to the left end in positions

1, . . . , |L|, and R = {v1, . . . , v|R|} the set of vertices assigned to the right end in positions

n, . . . , n− |R|+ 1, respectively. Denote with F = V \ (L∪R) the set of unplaced vertices.

The relaxation value is defined by Caprara and Salazar-González as follows. Since the

vertices in L∪R have already been assigned positions, each arc leaving t that assigns one

of these vertices to xi leads to an infeasible child node u with relaxation value cu =∞.

The remaining arcs lead to feasible child nodes. To define the relaxation value cu at such

a node, the bound (6) is modified to reflect the fact that vertices in L and R have been

assigned positions. Let Π be the set of all permutations of {1, . . . , n}, and Πp the set of all

permutations of subsets of {1, . . . , n} of cardinality p. Then the relaxation value cu is the

optimal value of the following bi-level integer programming problem:

min φ

fv ≤ τv ≤ `v, v ∈ F,

τuh = h, h= 1, . . . , |L|,

τvi = n− i+ 1, i= 1, . . . , |R|,

τ ∈Π

`uh = h, h= 1, . . . , |L|,

φ≥ i−h, ∀(ui, uh)∈E,

fvi = n− i+ 1, i= 1, . . . , |R|,

φ≥ i−h, ∀(vi, vh)∈E,

where

`v = max
πv∈Π|NL

1 (v)∪{v}|

{
πvv

∣∣∣ φ≥ πvv −πvu, πvu ≤ `u, ∀u∈NL
1 (v)

}
, ∀v ∈ F

fv = max
ρv∈Π|NR

1 (v)∪{v}|

{
ρvv

∣∣∣ φ≥ ρvv− ρvu, ρvu ≤ fu, ∀u∈NR
1 (v)

}
, ∀v ∈ F
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Here NL
1 (v) is the set of nodes adjacent to v for which the shortest distance to any node

in L is exactly one unit shorter than the shortest distance from v to a node in L. NR
1 is

defined analogously.

The inner-level IPs compute the accurate values for fv and `v, the first and last positions

available to v ∈ F without violating the current value of φ. The outer level IP optimizes the

bandwidth and location of the free vertices subject to these constraints on their positions,

while ensuring that (a) the fixed vertices are placed in the correct locations, and (b) the

bandwidth is at least the length of the longest edge between two vertices in L or R. Edges

incident to a free vertex are implicitly considered when computing `v and fv, but edges

between a vertex in L and one in R do not affect the bandwidth, making this a relaxation.

Propositions 12 and 15 in Caprara and Salazar-González (2005) present a simple

algorithm for solving this problem. It performs binary search on the value of φ, guided by

the feasibility of the bounds imposed on the unfixed vertices by fv and `v. The complexity

of the algorithm is O(m logn+n log2 n).

Consider, as a simple example, the graph in Figure 2. Suppose that φ≤ 2 and vertex c

has been fixed to the first position of the arrangement, so τc = 1. This allows us to bound

the domains of its neighbours, `b = 3 and `e = 3 and similarly `d = 5, which of course has

been known all along. Observe that one of vertices b or e must be placed into position 2,

so although `c = `e = 3, we improve on the bounds by inferring `d = 4 followed by τa = 5.

We can also include variable selection in the worst-bound heuristic, using the greedy

algorithm described earlier, rather than relying on an alternating variable selection scheme.

We consider only two candidates for the next variable on which to branch. At each eligible

node u, we let the branching variable be the next variable on the left or the next variable

on the right, rather than strictly alternating as above. Thus if the currently fixed variables

at u are x1, . . . , xi and xk, . . . , xn, we choose between xi+1 and xk−1 as the next branching

variable. The greedy choice is the variable that maximizes the smallest relaxation value

among u’s children. The resulting variable selection rule is path-based, but we will see that

it yields tighter bounds than a predefined path-based rule that alternates between left and

right.

9. Computational Results

We compare bounds obtained by the worst-bound heuristic (WBH), both with and without

predefined variable selection, to those obtained from depth-first search (DFS) and breadth-

first search (BFS). We also make a comparison with known graph-theoretic bounds.
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We use two types of randomly generated test instances and a set of benchmark instances

from the literature. The first set of randomized instances, denoted Random, consists of

90 random graph instances with 30 vertices. We generated 10 instances for each density

d∈ {0.1, . . . ,0.9}, so that every edge independently has probability d of occurring.

The second type of instances, denoted Turner, are generated according to the random

model of Turner (1986), which was also used for experiments in Caprara and Salazar-

González (2005). This model controls the bandwidth to be at most φ while keeping the

density fixed at d∈ {0.3,0.5}. For each density, we generated 10 instances with 30 vertices

for each φ∈ {3,6, . . . ,27}, 10 instances with 100 vertices for each φ∈ {10,20,30,40,50}, 10

instances with 250 vertices for each φ∈ {20,40,60,80}, and 10 instances with 1 000 vertices

for each each φ∈ {50,100,150,200}. This results in a total of 440 instances.

Finally, we test on the set of Matrix Market1 benchmark instances. As in Caprara and

Salazar-González (2005), we restrict ourselves to instances with up to 250 vertices, leaving

39 instances with between 24 and 245 vertices (including 26 with at least 100 vertices).

Figures 3–7 are a representative sample of performance profiles that indicate the fraction

of instances (vertical axis) for which a given branching strategy proves a target bound

after branching on a given number of nodes (horizontal axis). The target bound is typically

within 0% or 5% of the optimal or best-known bandwidth (for the Random and MM instances),

or φ (for the Turner instances). The Random instances were small enough for us to solve with

an off-the-shelf constraint programming toolkit, Gecode (Schulte et al. 2017), while the

best-known values were used for the MM instances. Branching strategies compared are WBH

with greedy variable selection (WBH-VS) and WBH with layered branching order which

alternates between placing vertices in the left and right of the permutation (WBH-LR),

as well as DFS and BFS with the same alternating branching order. Where relevant the

figures also show the fraction of instances for which the tighter of the graph theoretic lower

bounds (5) and (6) achieved the target bound. The number of internal nodes are limited

to k ∈ {100,1 000,10 000}; when the horizontal axis terminates before k, all of the curves

are flat for a larger number of branches up to k. We omit results for the Turner instances

with 1000 vertices, since the gap between the tightest graph theoretic lower bound and the

upper bound φ was found to be 0.35% on average, leaving little room for improvement.

1 Available at http://math.nist.gov/MatrixMarket/.
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Figure 3 A performance profile showing the fraction of Random instances with 30 vertices for which a target

bound is proved. Graph theoretic bounds are not indicated because they never achieved the target.

The partial tree is limited to k = 100 or k = 10,000 internal nodes.

The figures indicate that worst-bound branching with fixed variable order is superior

to both breadth-first and depth-first branching, and far superior to the graph-theoretic

bounds. Moreover, worst-bound branching with variable selection tightens the bound

substantially, for any given time investment. In fact, on the Random, Turner30 and MM

instances it obtains the optimal value for most instances after only modest computational

effort. WBH-VS and WBH-LR retains a clear advantage over BFS and DFS on the larger MM

instances. On the larger instances it is unsurprisingly more difficult for any of the branching

methods to achieve the target bound in a limited number of nodes. On the Turner250

instances the worst-bound heuristic provides a smaller benefit over the alternatives, in part

because the node limits are more restrictive in a large graph with an increased branching

factor, and in part due to the fact that the gap between the graph theoretic lower bounds
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Figure 4 A performance profile showing the fraction of Turner instances with 30 vertices for which a target

bound is proved. The horizontal line indicates the best graph theoretic bound. The partial tree is limited

to at most 100, or 1 000 internal nodes.

Figure 5 A performance profile showing the fraction of Turner instances with 100 vertices for which a target

bound is proved. The partial tree is limited to at most 1 000 internal nodes.

and φ is much smaller (see Table 1). Yet the worst-first heuristic continues to prove stronger

bounds than BFS and DFS while requiring significantly less computation.

Figures 8–10 are scatter plots comparing the gap between the lower and upper bound for

the respective branching strategies on a per-instance basis after branching on a specified

number of nodes. The plots for the omitted test sets are similar. We observe that WBH-

VS inproves over WBH-LR and BFS on a significant fraction of the instances, including

many which are solved optimally by WBH-VS, while the alternative methods report gaps

in excess of 5 or 10%.

Table 1 shows the average gap between the lower and upper bounds after branching on

100,1 000 or 10 000 nodes for each of the methods. As a benchmark we also report the
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Figure 6 A performance profile showing the fraction of Turner instances with 250 vertices for which a target

bound is proved. The partial tree is limited to at most 1 000, or 10 000 internal nodes.

Figure 7 A performance profile showing the fraction of MM instances which a target bound is proved. The partial

tree is limited to at most 1 000, or 10 000 internal nodes.

average gap between the strongest of the graph theoretic bounds and the best known upper

bound. For all test sets, the gap is significantly reduced by WBH-LR and WBH-VS after

branching on only 100 nodes. On all the test sets except Turner100, WBH-VS achieves

an average gap of less than 1% after branching on 10 000 nodes. We also observe that the

graph-theoretic bounds are far tighter on the Turner250 instances than any other, with

an average gap of 4.7%. This decreases to 0.35% in our randomly generated Turner1000

instances (not shown). Finally, we remark that it is perhaps somewhat surprising that DFS

on occasion reports smaller gaps than BFS. This suggests that having strong upper bounds

is useful even when solving the branching dual.

We also studied the relative memory requirements of the branching methods.

Table 2 reports the maximum frontier size encountered while branching on up to k ∈
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Figure 8 Scatter plot showing the relative performance of BFS and WBH-LR compared to WBH-VS on the 90

Random instances with 30 vertices after branching on 100 nodes.

{100,1 000,10 000} nodes, averaged over the instances in each of the test sets. The

maximum frontier size is the largest number of open nodes stored at any point during the

computation and is closely correlated with memory requirements. As expected, DFS leads

to significantly smaller frontier sizes than any of the other methods since it quickly probes

to a layer deep in the tree where the average branching factor is likely to be much lower than

at the root node, and spends the bulk of the computation time at that depth. The memory

requirements of WBH-VS is comparable to that of WBH-LR on the smaller instances, and

within a factor of 2.5 on Turner250 and MM. Both variants of the worst-bound heuristic

generally have much smaller frontier sizes than BFS.

Although our theoretical results do not guarantee the strongest bound for a given frontier

size, we observe that the maximum frontier size is strongly correlated with the node limit

k and the size of the instance. A user who has limited memory available may select a node

limit k appropriately and strengthen the bound as much as possible subject to the node

limit k as guaranteed by Corollary 2. This is unlikely to differ much from the best possible

bound subject to an explicit constraint on the frontier size.

10. Conclusion

We studied the branching dual of an optimization problem for the purpose of strengthening

an existing bound. We showed that for any predefined path-based variable selection rule,

a natural worst-bound node selection heuristic is optimal for proving bounds with a given

computational investment. We evaluated the worst-bound heuristic experimentally on the
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Figure 9 Scatter plot comparing WBH-VS with BFS and WBH-LR on the 70 Turner instances with 100 vertices

after branching on 10 000 nodes.

Figure 10 Scatter plot comparing WBH-VS with BFS and WBH-LR on the 39 MM instances after branching on

1 000 nodes.

minimum bandwidth problem using a relaxation function in Caprara et al. (2011) and

found that it is much more effective at proving bounds that depth-first or breadth-first

search. Finally, we showed how combining this node selection heuristic with local search

strategies for variable selection can lead to significant improvements in the quality of the

bounds.

The branching dual method is proposed here primarily for combinatorial problems that

have no useful integer programming model. In such cases, one need only determine how to

strengthen a known bound, even a weak one, to reflect the fact that some variables have

been fixed. However, the same technique can also be used to obtain bounds for integer

or mixed integer programming models. In this case, modifying the linear programming

bound to reflect fixed variables is trivial. The method can also applied at individual nodes
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of a conventional branch-and-cut tree to obtain bounds that may be tighter than those

obtained from a linear relaxation with cutting planes. More generally, the method can

be used for problems with a mixture of discrete variables (not necessarily integer) and

continuous variables, so long as a relaxation value can be computed when some of the

discrete variables have been fixed. This remains a topic for future research.
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