A distributed system for enumerating
main classes of sets of mutually
orthogonal Latin squares

Johannes Gerhardus Benadé

Thesis presented in partial fulfilment of the requirements for the degree of
Master of Science
in the Faculty of Science at Stellenbosch University

Supervisor: Prof JH van Vuuren
Co-supervisor: Dr AP Burger December 2014

Declaration

By submitting this thesis electronically, I declare that the entirety of the work contained therein
is my own, original work, that I am the sole author thereof (save to the extent explicitly oth-
erwise stated), that reproduction and publication thereof by Stellenbosch University will not
infringe any third party rights and that I have not previously in its entirety or in part submitted
it for obtaining any qualification.

Date: December 1, 2014

Copyright (© 2014 Stellenbosch University

All rights reserved

ii

Abstract

A Latin square is an n X n array containing n copies of each of n distinct symbols in such a way
that no symbol is repeated in any row or column. Two Latin squares are orthogonal if, when
superimposed, the ordered pairs in the n? cells are all distinct. This notion of orthogonality ex-
tends naturally to sets of k > 2 mutually orthogonal Latin squares (abbreviated in the literature
as k-MOLS), which find application in scheduling problems and coding theory.

In these instances it is important to differentiate between structurally different k--MOLS. It is
thus useful to classify Latin squares and k-MOLS into equivalence classes according to their
structural properties — this thesis is concerned specifically with main classes of k-MOLS, one
of the largest equivalence classes of sets of Latin squares.

The number of main classes of &-MOLS of orders 3 < n < 8 have been enumerated in the
literature by recursive backtracking algorithms. All enumeration attempts for k~-MOLS of order
n > 8 have, however, encountered a computational barrier using current computing technology
in traditional computing paradigms. In this thesis, the feasibility of these enumerations of order
n > 8 is analysed and a potential way of overcoming this computational barrier is proposed.

A backtracking enumeration algorithm from the literature is implemented and validated, after
which novel estimates of the sizes of the enumeration search trees for k-MOLS of orders n > 8
produced by this backtracking algorithm are presented.

It is also advocated that the above-mentioned computational barrier may be overcome by vol-
unteer computing, a computing paradigm in which large computations are distributed over
thousands or even millions of volunteered computing devices, such as desktop computers and
Android cellphones. A volunteer computing project is designed for the distributed enumeration
of main classes of k-MOLS. Initial test results obtained from this volunteer computing project
have called for a novel work unit issuing policy which allows the participating host resources to
be utilised effectively during enumerations of main classes of k-MOLS of arbitrary orders.

A local pilot study involving the enumeration of main classes of 3-MOLS of order 8 has confirmed
the feasibility of adopting the volunteer computing project as an avenue of approach towards
the enumeration of k-MOLS of orders n > 8 and preliminary results of an ongoing enumeration
attempt for the main classes of 7-MOLS of order 9 are presented.

iii

v

Uittreksel

'n Latynse vierkant is 'n nxn skikking wat n kopie€ van elk van n verskillende simbole bevat sodat
geen simbool in enige ry of kolom daarvan herhaal word nie. Indien twee Latynse vierkante op
mekaar gesuperponeer word, en die geordende pare simbole wat sodoende in die n? selle gevorm
word, almal verskillend is, word die vierkante ortogonaal genoem. Die begrip van ortogonaliteit
veralgemeen op 'n natuurlike wyse na k > 2 onderling ortogonale Latynse vierkante (wat in die
internasionale literatuur as k-MOLS afgekort word) en vind toepassing in skeduleringsprobleme
en kodeerteorie.

In hierdie toepassings is dit belangrik om 'n onderskeid te tref tussen struktureel verskillende k-
MOLS. Dit is gevolglik nuttig om Latynse vierkante en k-MOLS in ekwivalensieklasse volgens hul
strukturele eienskappe te klassifiseer. In hierdie verhandeling word daar gefokus op hoofklasse
van k-MOLS, een van die grootste ekwivalensieklasse van versamelings Latynse vierkante.

Die getal hoofklasse van k-MOLS van ordes 3 < n < 8 is in die literatuur deur middel van
rekursiewe algoritmes met terugkering getel. Geen poging om hoofklasse van k-MOLS van ordes
n > 8 te tel, kon egter daarin slaag om ’'n berekeningstruikelblok te oorkom wat as gevolg van
huidige rekentegnologiese beperkings bestaan nie. In hierdie verhandeling word die haalbaarheid
van sulke telpogings vir orde n > 8 ondersoek en word 'n metode voorgestel waarmee hierdie
berekeningstruikelblok moontlik oorkom kan word.

'n Bestaande telalgoritme met terugkering word geimplementeer en gevalideer, waarna nuwe
afskattings van die groottes van die soekbome vir hoofklasse van k-MOLS van ordes n > 8 wat
deur hierdie algoritme deurstap moet word, daargestel word.

Daar word geargumenteer dat die bogenoemde berekeningstruikelblok moontlik oorkom kan word
deur gebruik te maak van 'n grootskaalse parallelle rekenparadigma waarin groot berekeninge
oor duisende of selfs miljoene rekentoestelle, soos tafelrekenaars of Android sellulére telefone
wat vrywillig deur gebruikers vir hierdie doel beskikbaar gemaak word. So 'n verspreide bereke-
ningsprojek word vir hoofklasse van k-MOLS ontwerp. Aanvanklike resultate wat uit hierdie
projek voortgespruit het, het 'n nuwe beleid genoodsaak waarvolgens werkeenhede aan deelne-
mende rekentoestelle op s6 'n wyse uitgedeel word dat die projek doeltreffend van hulpbronne
gebruik maak, selfs wanneer hoofklasse van k-MOLS van arbitrére ordes bepaal word.

'n Lokale proefstudie word geloods waartydens bekende telresultate vir hoofklasse van k-MOLS
van orde 8 bevestig word. Die haalbaarheid van 'n verspreide berekeningsbenadering, waaraan
baie vrywilligers kan deelneem om hoofklasse van k-MOLS van orde n > 8 te tel, word ondersoek
en die resultate van 'n huidige verspreide berekeningspoging om hoofklasse van 7-MOLS van orde
9 te tel, word gerapporteer.

vi

Acknowledgements

The author wishes to acknowledge the following people for their various contributions towards
the completion of this work:

e My supervisor Prof JH van Vuuren, for his excellent guidance, enthusiasm towards this
project and dedication to his students.

e My co-supervisor Dr Alewyn Burger, for his accessibility, friendliness and invaluable as-
sistance whenever required.

e The National Research Foundation and MIH Media Lab for their financial assistance.
e My fellow students, who made procrastinating so much more enjoyable.

e My family and girlfriend, for their love, understanding and support.

vii

viii

Table of Contents

List of Figures
List of Tables

1 Introduction
1.1 Historical backgroundo L L
1.2 Problem statement L L
1.3 Scope and objectives L

1.4 Thesis organisation L L Lo

2 Mathematical preliminaries
2.1 Combinatorics e e
2.2 Group theory e
2.3 Latin squares e e
2.3.1 Basic definitions
2.3.2 Orthogonal Latin squares
2.3.3 Operations on Latin squares

2.4 Chapter SUMMATY« . v v v et et e e e

3 The enumeration of MOLS
3.1 The classification of Latin squares,
3.2 A historical overview of the enumeration of Latin squares
3.3 The enumeration methodology adopted in this thesis
3.4 On the enumerability of larger-order search spaces

3.5 Chapter summaryo e e

4 Volunteer computing
4.1 A historical overview of public-resource computing

4.2 The Berkeley Open Infrastructure for Network Computing

X

xi

xiii

[IS B O

©

12
13
13
15
16
19

21
21
24
27
36
41

X Table of Contents
4.2.1 Basic workflow and concepts of volunteer computing 46

4.2.2 Grid-enabling a simple BOINC project 47

4.2.3 Special types of applications o oL 52

4.2.4 Setting up a server and project maintenance 53

4.2.5 Security CONCEINS v o it 54

4.2.6 Challenges facing volunteer computing 54

4.3 Chapter SUMMmMAryt e e 55

5 A distributed volunteer project for the enumeration of k.-MOLS 57
5.1 A volunteer project for counting 3-MOLS of order 8 57
5.1.1 Server architecture 58

5.1.2 Grid-enabling the exhaustive enumeration algorithm 58

5.1.3 Deamons 59

5.1.4 First enumeration results L Lo 59

5.2 Generalising to the enumeration of &-MOLS of order n 60
5.2.1 Limiting work unit sizes Lo 61

5.2.2 Dynamic splitting of work units, 63

5.2.3 Implementing and validating the generalisation 64

5.3 Enumeration results emanating from an implementation 66
5.4 Chapter SUMMATY o v vt e e e e e e e 68

6 Conclusion 69
6.1 Overview of the work contained in this thesis 69
6.2 An appraisal of the contributions of this thesis 71
6.3 Future work L 71
References 73

1.1
1.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
9.3
5.4

List of Figures

A four-by-four arrangement of cards as solution to a 1624 puzzle

The 2-MOLS of order 10 constructed by Parker to disprove Fuler’s conjecture . .

The relationships between the transformations applicable to Latin squares
Three Latin squares of order 4
The backtracking enumeration search tree for 2-MOLS of order 5
Estimating the size of a tree by performing random dives

The number of feasible candidate universals passing the isOrthogonal test

The basic workflow on the client and BOINC project server
The interaction between the BOINC server, the database, clients and daemons

Examples of graphical applications used by SETI@Home and WCG

A graphical representation of the checkpointing strategy
A hypothetical volunteer computing project with four hosts
The effect of recycling work units in the hypothetical volunteer project

The effect of splitting recycled work units in the hypothetical volunteer project .

xi

22
23
33
37
38

47
ol
92

o8
62
63

xii

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6
5.7
0.8

List of Tables

Scheduling an experiment involving combinations of grapes and yeast

The cyclical nature of permutations

The Cayley table of the group (Z4,+). oo oo

A summary of transformations applicable to the classification of Latin squares

The number of main classes of k-MOLS of order n € {3,4,...,10}
The active branches of the search tree for 3-MOLS of order n <8
The active nodes and the enumeration time for 3-MOLS of order 8
Validating the implementation of Algorithm 3.1
Validating the implementation of Algorithm 3.1 with normalised runtimes
Estimated tree sizes after the isOrthogonal test for orders 8, 9 and 10.

The average proportion of nodes passing the isSmallest test

The estimated enumeration tree size and runtime for 3-MOLS of orders 9, 10

Nodes on level 0 for main classes of k--MOLS of orders n € {3,4,...,10}
The nodes on level 0 per section for 3-MOLS of order 9

The core of the BOINC C/C++ API [92].
Parameters that may be specified in the input template of a BOINC project . . .
Parameters that may be specified in the output template of a BOINC project . .

Results of an initial distributed enumeration attempt for 3-MOLS of order 8 . . .
Host contribution during an initial enumeration for 3-MOLS of order 8
The results issued in each section of the tree for 3-MOLS of order 8.
The file format of a starting position, checkpoint and result
Validating the work unit management policy at node 9 for 3-MOLS of order 8 . .
Results issued under a new work management policy
Host contribution under the new work unit management policy

The distribution of the nodes on level 0 for 7-MOLS of order 9

xiii

48
50
o1

Xiv

List of Tables

5.9 Partial results for two sections of the enumeration for 7-MOLS of order 9 67

CHAPTER 1

Introduction

Contents
1.1 Historical background L o 1
1.2 Problem statement Lo 4
1.3 Scope and objectives 5
1.4 Thesis organisation L e 6

1.1 Historical background

In 1624 Claude Gaspard de Bachet published a book of mathematical puzzles entitled “Problemes
plaisants & délectables: qui se font par les nombres.” One of these puzzles asked in how many
ways it is possible to arrange the sixteen court cards from a standard deck of playing cards in a
four-by-four grid such that every row and column of the grid contains exactly one card of each of
the four ranks and one card of each of the four suits [7]. An example of such an arrangement may
be found in Figure 1.1. Bachet mistakenly claimed that there are 72 such designs if rotations
and reflections of a design are not considered to be different designs. The correct number of
such designs is, however, 144 [43].

FIGURE 1.1: A four-by-four arrangement of the court cards from a deck from cards which is a solution
to the puzzle posed by Claude Gaspard de Bachet.

2 CHAPTER 1. INTRODUCTION

Approximately 150 years later, the Swiss mathematician Leonhard Euler started a 1782 paper
with a reference to a similar puzzle occupying his thoughts:

“A very curious question that has taxed the brains of many inspired me to under-
take the following research that has seemed to open a new path in Analysis and in
particular in the area of combinatorics. This question concerns a group of thirty-six
officers of six different ranks, taken from six different regiments, and arranged in a
square in a way such that in each row and column there are six officers, each of a
different rank and regiment.” [33]

Euler used the first six letters of the Latin and Greek alphabets to denote respectively the six
regiments and ranks in his attempts at constructing such a design, leading to the contemporary
term “Greaco-Latin square of side 6” when referring to such a design. The problem may be
restated by asking for a six-by-six arrangement of pairs of symbols, one specifying a soldier’s
rank and the other his regiment, in such a way that no rank or regiment is repeated in any row
or column. Implicit in this definition is the fact that every pair of symbols is unique (in other
words, no two soldiers of the same rank also hail form the same regiment).

Euler was unable to find such an arrangement of soldiers and conjectured not only that no such
arrangement exists for six-by-six grids, but also that none exists for (4k + 2) x (4k + 2) grids,
where k € Z, k > 1. Approximately 120 years later, Gaston Tarry [90] proved (in 1900) that
Euler’s “36-Officers problem,” as it had then become known, indeed has no solutions. Another
sixty years later, however, constructions for Greaco-Latin squares of sides 10 [78] and 22 [14]
were found, thereby disproving Euler’s conjecture for these cases. Shortly afterwards, general
constructions were established for Greaco-Latin squares of side 4k + 2 for all k € Z, k > 1 [13].

Today, these designs are no longer referred to as Greaco-Latin squares of side n, but rather as
pairs of mutually orthogonal Latin squares of order n (which may, of course, be superimposed to
form a Greaco-Latin square). The term orthogonal here means that the pairs of superimposed
symbols are unique as ordered pairs (in other words, no two soldiers are both of the same rank
and the same regiment). Orthogonality may be generalised to a collection of & > 2 Latin squares
which are mutually orthogonal in pairs, called a set of k mutually orthogonal Latin squares of
order n, and abbreviated in this thesis as k-MOLS of order n.

These early investigations described above summarise the three main concerns involving Latin
squares. First there is the question of the existence of a Latin square or a k-MOLS of a certain
order. Secondly, attempts are made to find constructions for Latin squares or k-MOLS of certain
order, possibly satisfying additional properties. It was seen in Bachets’ algorithm that solutions
which are rotations or reflections of other designs were not counted as distinct designs. This
introduces the notion that certain distinct Latin squares and k-MOLS share fundamental struc-
tural properties which remain invariant under certain symmetry and other operations. Latin
squares and k-MOLS may be partitioned into equivalence classes according to these properties.
One of the most general such classes, and one that is particularly important in this thesis, is
called a main class. The final question commonly asked in relation to combinatorial designs,
such as Latin squares or k-MOLS, concerns the enumeration of all structurally different designs
that exist of a given order.

Despite the fact that Latin squares were seen as mathematical curiosities for a long time, they,
and especially k-MOLS, have interesting applications. Perhaps the best-known application oc-
curs in the design of experiments, as described by Fischer and Yates [39]. Consider a study
involving objects of n different types treated in n different ways. Suppose every type of object
receives all the possible types of treatment and a subset of n objects are to be repeatedly sam-
pled in such a way that every type of object and every type of treatment is included in each

1.1. Historical background 3

TABLE 1.1: An experiment testing combinations of grapes and yeast for a vineyard. The entries in the
table represent the number of weeks after which the combination should be drank to ensure a balanced
sampling.

Merlot Pinot noir Malbec Garnay

Saccharomyces 1 2 3 4
Candida 4 1 2 3
Kloeckera 3 4 1 2
Zygosaccharomyces 2 3 4 1

sample, but that no two samples of the same period may coincide in either the variety of the
grape or the type of the yeast used. A Latin square of order n provides a feasible schedule
for the sampling of such an experiment over up to n time periods. For example, if a vintner
is interested in experimenting with four different varieties of grape in combination with four
different strains of yeast, and sampling takes place at the end of every week for a month, then
the schedule in Table 1.1, which is a Latin square of order 4, ensures that every variety of grape
and yeast is included in each of the weekly samples, but that no two of the wines tasted in any
week contain the same variety of grape or yeast. Furthermore, if it is, for example, believed that
the nature (e.g. the type of wood, the way it was treated or the age) of the casket in which the
wine matures affects the wine’s taste, a second Latin square of order 4, orthogonal to the Latin
square in Table 1.1, may be used to ensure that a wine from every type of casket is sampled
every week.

In addition to assisting in experimental design, Latin squares and k-MOLS have a number
of applications in coding theory, which deals with techniques for ensuring that a transmitted
signal/message is interpreted correctly. A simple application in this field involves the use of
the tuples (4,7, L(i,j))! from a Latin square L of order n to represent n? code words. This
code has the property that any single error during transmission will not only be detected, but
may also be corrected. This schema of using Latin squares in error correcting codes may be
extended to multiple-error corrections by employing k-MOLS? instead of single Latin squares.
Other notable applications of Latin squares and MOLS to scheduling problems include computer
memory access schemes [66] and sports scheduling [50, 52, 83]. In these applications, every
structurally different Latin square or k-MOLS represents an additional solution and therefore
allows the scheduler more freedom to consider additional constraints that are external to the
basic problem description.

A considerable amount of research has been done since 1782 on partitioning Latin squares and
k-MOLS into equivalence classes based on their structural properties and attempting to count
these equivalence classes. This is not an easy enumeration problem in view of the fact that
a single row of a Latin square may take n! different forms. Almost all studies attempting to
enumerate these equivalence classes have, in fact, encountered a computational barrier in the
form of what Erdos called a “combinatorial explosion” [31] — even for relatively small orders
of Latin squares and k-MOLS. For example, the main classes of k-MOLS constitute one of the
larger types of equivalence classes and have only been enumerated for k-MOLS of orders not
exceeding n = 8 [53].

The difficulties associated with these types of enumeration problems may perhaps best be ap-

'Here the notation L(i,7) denotes the entry in row ¢ and column j of a Latin square L.

2The application of error-correcting codes is not considered any further in this thesis. The interested reader
is, however, referred to Golomb and Poner [Golomb |, Bossen et al. [48] and Elspas et al. [65] for descriptions of
the applications of Latin squares in coding theory.

4 CHAPTER 1. INTRODUCTION

preciated by considering the case of a pair of orthogonal Latin squares of order 10, which was a
significant stepping stone in the long process of disproving Euler’s conjecture. Prior to Parker’s
1959 construction of the pair of orthogonal Latin squares of order 10, shown in Figure 1.2,
researchers doubted the existence of such a design for approximately 170 years. Today, how-
ever, it has been heuristically argued [62] that there are approximately 10! such distinct pairs,
all of which somehow managed to elude the combinatorial research community for nearly two
centuries. Today, the question of the existence of a 3-MOLS of order 10 is one of the most
celebrated open questions in design theory and it is very possible that, if such designs exist,
there are multiple instances of these designs that have thus far evaded detection.

1 2 3 4 5 6 78 9 0] 2316 9 4875 0])
74206 5 89 31 4 27918 5 036
51 46 08 9 273 145 7803 26 9
071389 45 1F6 7108 3 2 46 25
3578 91046 2 5 73 2 416 9 0 8
20598316 58/'(0s5 21769 33814
43 05 276189 304569 2817
8 96 23 05 714 98 6 42 305 71
6 8 9 71 42 30 5 8 6 9 05 714 2 3

9 6 81 42 305 7] [69 8305 714 2])

FIGURE 1.2: The 2-MOLS of order 10 constructed by Parker [78] approximately 170 years after Euler first
questioned their existence. Today it is estimated that there may be up to 10'® such distinct designs [62].

Although the enumeration of main classes of MOLS is undoubtedly a very challenging problem
from a computational point of view, it is usually attacked within the traditional framework of
scientific computing, consisting of the use of a desktop computer or a high-performance com-
puting cluster. The rapid rise in popularity of personal computers and mobile devices over the
last decade has, however, created a world in which an estimated ten billion devices are con-
nected through the internet [4, 34], only a very small portion of which is actually harnessed by
researchers. Two very common examples of wasted computing resources may perhaps briefly
be considered. In the six months after its release in 2013, forty million Samsung Galaxy S4
smartphones were sold. Every Galaxy S4 boasts a quad-core processor, a quad-core graphical
processing unit and 2Gb of random access memory, but spends the majority of its lifespan in
standby mode. Similarly, Stellenbosch University owns approximately 4000 computers, scat-
tered among various computer user areas, offices and administrative buildings, but the vast
majority of these multi-core machines are idle more than eight hours per day.

Changing technology demands that scientists adapt their tools! Indeed, it is conceivable that
many computational barriers may be shifted dramatically and that many open research questions
may be resolved if only a fraction of the computing power available today is used efficiently.
Might the existence question of 3-MOLS of order 10 perhaps be resolved as a result of such a
barrier shift?

1.2 Problem statement

The enumeration of main classes of k-MOLS of order n > 8 has been found to be computationally
too challenging for the current computing technology if conducted in a traditional scientific

1.3. Scope and objectives 5

computing paradigm. The feasibility of establishing a distributed computing project that makes
use of volunteers’ idle computing resources is considered in this thesis as a potential way of
overcoming the computational barrier currently experienced in the enumeration of main classes

of k-MOLS of order n > 8.

A number of middleware systems exist for establishing collaborative grid computers. Of these,
the Berkeley open infrastructure for network computing (BOINC) is the most widely used in
the constext of public volunteer computing. A BOINC project is designed in this thesis for
the exhaustive enumeration of main classes of k-MOLS of order n and the feasibility of this
enumeration approach is confirmed in the form of a pilot study for n = 8 and n = 9.

1.3 Scope and objectives
The following objectives are pursued in this thesis:

I To survey the literature related to the theory of Latin squares and k-MOLS, as well as the
practice of distributed computing.

II To review a variety of popular equivalence classes of Latin squares and k-MOLS and to
document previous attempts at enumerating these classes of combinatorial objects.

IIT To design an effective algorithm for the enumeration of main classes of k&-MOLS.

IV To implement this algorithm and to verify its correctness by comparing its results to known
enumeration results for k-MOLS of order n < 8.

V To estimate the sizes of the enumeration search trees for k-MOLS of orders n = 9 and
n = 10, which are currently computationally too expensive to traverse serially.

VI To design a distributed computing project for the enumeration of main classes of k-MOLS.

VII To launch a local pilot volunteer computing project for the enumeration of main classes
of k-MOLS of orders 8 and 9 by means of volunteer computing.

VIII To establish the feasibility of using public volunteer computing for the enumeration of main
classes of MOLS of orders 9 and 10, including the potential of the contribution of such an
enumeration approach to towards settling the infamous existence question of 3-MOLS of
order 10.

Combinatorial designs other than Latin squares are largely considered to be beyond the scope
of this thesis, as are geometric and algebraic representations of Latin squares and k-MOLS.
Although the enumeration of Latin squares and k-MOLS is considered in this thesis, the question
of the existence of these objects is not considered explicitly, except to the extent in which an
enumeration attempt may imply the (non-)existence of a design. More specifically, only main
classes of k-MOLS are considered; other equivalence classes are reviewed merely to provide a
context for the current study of Latin square main classes.

Finally, this study is restricted to volunteer computing, specifically employing BOINC as mid-
dleware, as this is the predominant volunteer computing middleware in use today. Alternative
desktop grid architectures are not considered, and neither are alternative computing paradigms,
such as cloud computing.

6 CHAPTER 1. INTRODUCTION

1.4 Thesis organisation

In the second chapter of this thesis various mathematical prerequisites are reviewed that are vital
for an understanding of the work in the remainder of the thesis. The notion of a permutation
is introduced and it is shown how a binary composition operator may act on permutations.
Groups, quasigroups and Latin squares are defined, and it is described how a Latin square is
the Cayley table of a quasigroup. The notion of a universal, which plays an important role
in the enumeration process documented in later chapters, is also introduced. The notion of
orthogonality between pairs of Latin squares is formally introduced and generalised to sets of k
mutually orthogonal Latin squares. Finally, consideration is given to a number of permutations
which may act on the row, column or symbol indexing sets of a Latin square without changing
its underlying structural properties, as well as a the set of conjugate operations which may act
on a Latin square.

The third chapter is devoted to types of transformations applicable to Latin squares and k-
MOLS, each consisting of specific allowable operations, and the way in which these transforma-
tions generate equivalence classes. A historical overview of previous work on the enumeration
of equivalence classes of Latin squares and k-MOLS follows in the second section of the chapter.
It is shown that an ordering may be imposed on a set of Latin squares or k-MOLS, facilitating
the design of an exhaustive backtracking enumeration algorithm for finding the lexicographi-
cally smallest k-MOLS, called the class representative, in every main class. Numerical results
obtained by this enumeration algorithm are also presented in order to validate the algorithm
and to demonstrate the effectiveness of the enumeration approach for main classes of k-MOLS
of order n < 8. Because this enumeration process becomes computationally very expensive for
k-MOLS of order n > 8, Knuth’s [54] and Purdom’s [79] well-known techniques for estimating
the size of a rooted tree by a series of random dives down from the root are slightly modified
and applied to the enumeration search trees for k-MOLS of order n < 8 in order to elucidate the
structures of these trees. The sizes of the enumeration search trees for main classes of k-MOLS
are estimated for orders n < 10.

The concept of volunteer computing is explored in Chapter 4. Volunteer computing offers the
general public the opportunity to participate in scientific research and, in turn, provides scientists
with access to volunteers’ idle computing resources. A number of large organisations, such as
IBM, Oxford University and CERN, currently manage volunteer computing projects related to
some of their research. In §4.2, the focus falls on the ubiquitous middleware system responsible
for handling interaction between project scientists and engineers, called BOINC. Various aspects
of establishing and maintaining a volunteer computing project, such as the workflow, the steps
required to grid-enable an application, the set-up of a server, and the security concerns involved,
are explored.

The fifth chapter is devoted to the fundamental question of whether it is possible, and practical,
to grid-enable the enumeration algorithm presented in Chapter 3 for main classes of k-MOLS
in the hope that volunteer computing may provide access to sufficient computing power for
overcoming the computational barrier currently encountered in the numeration of main classes
of k-MOLS of order n > 8. In §5.1, the design and components of such a volunteer computing
project are outlined, the application is modified to make use of the BOINC application pro-
gramming interface and a proof of concept is demonstrated by enumerating 3-MOLS of order 8
on five hosts. This enumeration reveals serious concerns about the way in which work units are
generated that render larger enumeration attempts all but impossible. The second section of
the chapter is therefore concerned with resolving these problems through the introduction of an
improved work unit management policy. A local pilot project is launched to test the effectiveness

1.4. Thesis organisation 7

of this policy, the results of which are encouraging and presented in §5.3. The chapter closes
with a summary of partial enumeration results for main classes of 7-MOLS of order 9.

The thesis closes with in Chapter 6 with a summary of the work presented, an appraisal of the
contributions of this thesis and a discussion on potential avenues for further work.

CHAPTER 1. INTRODUCTION

CHAPTER 2

Mathematical preliminaries

Contents
2.1 Combinatorics e 9
2.2 Group theory 12
2.3 Latinsquares e 13
2.3.1 Basic definitions 13
2.3.2 Orthogonal Latin squares 15
2.3.3 Operations on Latin squares. 16
2.4 Chapter SUMMAry« . v vt it e e e e 19

The basic prerequisite mathematical knowledge for the study of Latin squares is presented in this
chapter. Some combinatorial concepts, centred around the notion of a permutation, are reviewed
in §2.1. Groups, quasigroups and loops are defined in §2.2, while §2.3 is an introduction to the
theory of Latin squares, starting with basic concepts and exploring the relationship between
Latin squares and quasigroups in §2.3.1. The notions of universals and transversals are also
considered in §2.3.1 and feature prominently in the following section on the orthogonality of Latin
squares and sets of Latin squares. In §2.3.3 consideration is given to the ways in which Latin
squares and sets of mutually orthogonal Latin squares may be transformed without changing
their fundamental structural properties.

2.1 Combinatorics

The two fundamental principles underlying the enumeration of combinatorial objects of certain
types, which may be found in most introductory textbooks in combinatorics, are called the
addition principle and the multiplication principle. According to Wallis and George [96], the
addition principle states that the total number of possible outcomes of an experiment, if drawn
from mutually exclusive pools, is simply the sum of the number of outcomes of the experiment in
each of the pools. The multiplication principle, on the other hand, claims that, when building an
arrangement of objects in stages in such a way that the choices at each stage do not depend on
the choices at the other stages, the total number of possible arrangements is the product of the
number of choices at every stage. By the addition principle, for example, a man buying a car and
deciding between three different Audis and four different BMWSs has 4 + 3 = 7 choices in total.
If, once he has picked a car, he is offered the choice of six different colours, two interior designs

9

10 CHAPTER 2. MATHEMATICAL PRELIMINARIES

and three engine sizes, he has a total of 6 x 2 x 3 = 36 possible choices by the multiplication
principle.

When selecting an ordered subset of k objects from a set of n distinct objects, where k& and n
are integers with k < n, there are clearly n possible objects which may be selected first. The
second object is chosen from n — 1 distinct objects, as some object has already been selected.
By repeated application of this observation, the k-th object will be selected from n + 1 — k
distinct objects. By the multiplication principle, the number of ways of selecting such a subset is
n-(n—1)---(n+1-k), or n!/(n—k)!, where the notation n! denotes the product nx (n—1)x...x1
of the first n natural numbers. Such an ordered subset is called a permutation of order k [96].
In the remainder of this thesis the term permutation will be restricted to refer specifically to
permutations of order n, in other words, the n! rearrangements of a set n of objects. It is clear
that any set of n objects may be labelled by the integers 0, 1,...,n — 1 (the elements of the set
of integers modulo n, which is commonly denoted Z,) and referred to by these labels, so that
any permutation may be considered without specific reference to its underlying objects.

A permutation p may thus be seen as an ordering of the elements of the set Z,, and may be
represented, in what Bond [11, p.73] calls two-line notation, as

- < 0 1 ... n-1)
P=00) p1) ... p(n-1))

where p(i) € Zj, is the image of i € Z,, under the permutation p . This notation emphasizes that
a permutation p is a function p : Z,, — Z,. As long as p(i) appears under 7 in this representation,
the elements i € Z, may appear in any order. Alternatively, if the elements i € Z,, are fixed
to appear in natural order, the top row may be omitted and the permutation simply expressed
as (p(0),p(1),...,p(n —1)). The integers ¢ € Z,, for which i = p(i) remain invariant under the
permutation p and are called fized points. The permutation of order n with n fixed points, in
other words for which i = p(7) for all ¢ € Z,, leaves the order of the elements of Z,, invariant
and is thus called the identity permutation, denoted by the symbol e.

A permutation p is lexicographically smaller than a permutation ¢, denoted by p < g, if p(j) <
q(j) for some j € Z,, and p(i) = q(i) for all i < j € Z,,. For example, (0,2,1,3,4) < (0,2,1,4,3),
and it is clear that the identity permutation is the lexicographically smallest permutation. Any
set of permutations may be ordered lexicographically.

The product, or composition, of two permutations p and ¢ of the same order is defined as
(gop)(i) = q(p(7)) for i € Z,, [96]. Applying the composition ¢ o p to the identity permutation
is clearly the same as first applying p and then applying ¢ to the resulting permutation. As an

example, note that
012345 012345\ (012345
<231504>o<510234> - (432150)'

Repeated application of a permutation p to itself reveals an interesting property of permutations.
The effect of the permutation p = (3,5, 1,0, 4, 2) repeatedly acting on itself may be seen in Table
2.1. It is clear that the position of the element 4 remains invariant, while the elements 0 and
3 are permuted among themselves, and the elements 1,2 and 5 among themselves. No matter
how often p is applied, it will always be the case that 0 is mapped to either 0 or 3, 1 is mapped
to 1,2 or 5, etc. It is therefore said that p cyclically permutes 0 and 3, and similarly for 1, 2
and 5. This concept allows the permutation p to be expressed in so-called cycle notation as
p = (4)(03)(152), where every integer is mapped to the one on its right, except for the last
integer of every cycle, which is mapped to the first. The length of a cycle is the number of
elements permuted by the cycle. Notice that, for cycles of length three or more, the order

2.1. Combinatorics 11

TABLE 2.1: The cyclical nature of permutations is revealed by repeated compositions of a permutation
with itself.

Composition Product

D (3,5,1,0,4,2)
pop (0,2,5,3,4,1)
popop (3,1,2,0,4,5)
popopop (0,5,1,3,4,2)

in which the elements are noted matter, since the cycles (152) and (125), for example, define
different actions. A cycle may, however, be rotated; no distinction is made between the cycles
(152), (521) and (215). The number of equivalent ways of expressing a cycle equals the length
of the cycle. Since the same permutation may be expressed in different forms in cycle notation,
such as p = (4)(03)(152) = (30)(4)(215), a unique way of writing permutations in cycle notation
is required. In canonical cycle notation, the largest element of a cycle is written first and cycles
are ordered in increasing order of these front elements. The canonical representation of the cycle
p above is (30)(4)(521).

In cycle notation, fixed points are equivalent to 1-cycles (cycles of length 1), and may generally
be omitted. The permutation (03) therefore fixes every element of a permutation of order n > 4,
except for the integers 0 and 3, which are interchanged.

The type of a permutation p of order n is denoted by an n-tuple (ay, ag, ..., a,) which summarizes
the lenghts of the cycles of p in such a way that a; is the number of cycles of length i for i € Z,.
The cycle structure of a permutation p is denoted z{'z5% - - - z%», where z; is a placeholder which
facilitates easier reading. A factor of the form ZZQ is usually omitted in this notation for any
i € Zn, while a factor of the form z} is merely written as z;. The permutation p = (3,5, 1,0,4,2)

considered earlier is of type (1,1,1,0,0,0) and has a cycle structure z;2923.

A lexicographical ordering may also be imposed on cycle structures of the same order. The
cycle structure 281292 ... 20 is lexicographically smaller than the cycle structure 21202 ... zbn
if a; > b; for some j € Z,, and a; = b; for all ¢« < j € Z,,. The cycle structure zlzg’ is therefore

lexicographically smaller than zzg.

The lexicographically smallest permutation with a given cycle structure is called the cycle struc-
ture representative and is found by arranging the cycles in order of increasing lengths and in-
serting the elements of Z,, in natural order from left to right. The cycle structure representative
of z12923, for example, is (0)(12)(345), or the permutation (0,2,1,4,5,3). It should be noted
that arranging cycle structures lexicographically also arranges the respective cycle structure
representatives lexicographically.

As mentioned above, that the composition p o g of two permutations p and ¢ of the same order
maps any i € Zy, to q(p(i)) € Zy. If the permutation ¢ is defined to be the specific permutation
for which ¢(p(7)) = i, then ¢ maps the permutation p to the identity permutation e, so ¢ o p = e.
In this case ¢ is called the inverse of p, which may be denoted by p~!, and has the property
that q(j) = p~1(j) =4 if p(i) = j for i,j € Z,. It may be shown that (p o ¢)™' = (¢~ o p71),
since the operation that was applied most recently must be inverted first.

Finally, note that the set of all permutations may be partitioned into equivalence classes. A
permutation p is a conjugate permutation of a permutation ¢ if there exists a third permutation
r such that ¢ = o p o r—1, in which case p and ¢ are in the same conjugacy class. Conjugate
permutations share many basic properties. It may, for example, be shown that two permutations
are in the same conjugacy class if and only if they are of the same type [11, Lemma 3.13].

12 CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.2 Group theory

Much of what is known about Latin squares is inextricably tied to group theory. A number of
basic notions from group theory are therefore reviewed in this section, so as to facilitate easier
understanding of the material in the remainder of the thesis.

Consider a set of elements G. A binary operation acting on this set is a mapping o : G x G — G,
In other words, a binary operation maps an ordered pair of elements of G to some other element
in G [2, Definition 2.7.1]. The composition or product of two elements g1, g2 € G is denoted by
g1 0 g2 = g1g2- The set G is said to be closed under the binary operation o if the product g g2
is an element of G for all g1,g2 € G. An element e € G with the property that eog=goe=g
for all g € G is called the identity element of G and is usually denoted by the symbol e. If, for
some pair g1, g2 € G, g10gs = gaog1 = e, then g; is the inverse of g2 in G and is denoted by 92_1
(similarly, g2 is the inverse of g; and is denoted by g;). These notions may be used to state
the axiomatic conditions for the existence of a group, which may be found in most textbooks
on group theory and is presented here following the approach of Allenby [2].

A group of cardinality n is an ordered pair (G, o), where G is a non-empty set of cardinality n
and o is a binary relation satisfying the following axioms:

G1 Associativity: g1 0 (g2 0 g3) = (g1 0 g2) o g3 for all g1, 92,93 € G;

G2 The existence of an identity element: there exists an e € GG such that goe =eo g = g for
any g € G; and

G3 The existence of inverses: for every g € GG, there exists a unique element of GG, denoted by
g~ ' such that gog ' =g log=e.

It may, for example, be verified that the set Z,, for integer values of n, together with the binary
operation of addition modulo n, form a group. Addition modulo n is associative since regular
addition is associative and the element 0 has the property that ¢g+0=04g = g for all g € Z,,.
Finally, for any g € Z,, the element b = n — g has the property that b+g=g+b=-ec. (Zn,+)
is therefore an example of a group of cardinality n, for all values of n € N. It is also easy to
verify that the set of all permutations of order n, together with the composition operation, as
defined in the context of permutations in §2.1, fulfil all the requirements of a group. This group
is called the symmetric group of order n and is denoted by S,,.

The Cayley table, or multiplication table, of a group (G, o) of cardinality n contains a succinct
representation of the way in which the binary operation o acts on G in the form of an n xn grid,
bordered by the elements of G, in which the cell in row g; and column go contains the value
g1 © g2. The Cayley table of (Z4,+) is, for example, given in Table 2.2.

TABLE 2.2: The Cayley table of the group (Z4,+).

+ |
0
1
2
3

wWw N = OO
S W N |
= O W NN
N = O W W

A quasigroup is a set of elements S, together with a binary operation o, such that the equations
sjox = 89 and y o s = s3, each have exactly one solution for any s1,s2 € S. A loop is a

2.3. Latin squares 13

quasigroup with an identity element. The chief difference between groups and quasigroups, or
loops, is that a quasigroup does not need to be associative. These notions will have particular
relevance to the study of Latin squares in this thesis.

A complete mapping of a group, quasigroup or loop is a one-to-one mapping 6 : G — G such
that the mapping p : G — G defined by p(z) = z o 6(x) is again a one-to-one mapping of G.

2.3 Latin squares

Concepts from the preceding two sections will be of assistance when introducing the notion of a
Latin square, the combinatorial object which is central to this thesis.

2.3.1 Basic definitions

A Latin square of order n is commonly defined (see, amongst others, Colbourn and Dinitz [24,
Definition 1.1]) to be an n x n array in which every cell contains a single symbol from an n-set
S, such that each symbol of S occurs exactly once in each row and column.

If, for example, S contains the four suits of playing cards, in other words S = {¢, % &, &},
then the 4 x 4 array

¢ V%A
LI S Y
L I T 4
Y & 4 0

is an example of a Latin square of order 4.

Let S(L) denote the symbol set of a Latin square L and let R(L) and C(L) denote its row and
column indexing sets, respectively. For any i € R(L) and j € C'(L), define L(3,j) € S(L) as the
element in the i-th row and the j-th column of L. In the remainder of this thesis it is assumed
that R(L) = C(L) = S(L) = Z, = {0,1,...,n — 1} for a Latin square L of order n, without
any subsequent loss of generality.

The transpose of L, denoted by LT, is the Latin square for which LT (j,i) = L(i,j) for all
i € R(L) and j € C(L). The k-th diagonal of L is the set of entries {((k+14) mod n,i) | i € Z,}
for some k € Z,, and the 0-th diagonal of L is simply referred to as the main diagonal of L. Any
row or column in which all of the entries of S(L) appear in numerical order, i.e. 0,1,...,n —1,
is said to be in natural order.

A Latin square may also be defined as an n x n array with the additional property that every
row and column is a permutation of the elements of S(L). Let L(i) and L' (j) denote the i-th
row and the j-th column of the Latin square L, respectively (note that the j-th column of L is,
by definition, also the j-th row of LT). Then L(i) may be expressed as the permutation

) 0 1 n—1
L(Z):<L(i’0) L(i,1) ... L(i,n—1)>‘

It is clear that every element k € Z, is mapped to a distinct element L(i, k) € S(L) by every
permutation in the set of row permutations {L(%) | ¢ € Z,} in order to prevent the repetition of
symbols in column k. A similar observation holds for the set of column permutations, {L” (5) |
JjE Ly}

14 CHAPTER 2. MATHEMATICAL PRELIMINARIES

Although Latin squares were studied by Leonhard Euler as early as 1782, the British mathe-
matician Arthur Cayley was first to notice, nearly a century later, that the multiplication table
(or Cayley table) of a group is an appropriately bordered Latin square. When the abstract
concept of a group was generalised to quasigroups and loops during the 1930s, Latin squares
again emerged as the corresponding Cayley tables, as is evident from the following result which
may be found in Dénes and Keedwell [29, Theorem 1.1.1].

Theorem 2.1 ([29]). The Cayley table of a quasigroup is a Latin square.

For any Latin square L, the underlying quasigroup of L is the group (G,o) where aob = c if
L(a,b) = c. In the case where the first row and column of L both appear in natural order,
L is said to be a reduced Latin square or in standardised form [29, p.105]. The element 0 in
the underlying quasigroup of a reduced Latin square L is therefore the identity element of the
quasigroup (G, o) so that (G,o) may be referred to as the underlying loop of L. Quasigroups
and loops are examples of a more primitive mathematical structure called a groupoid, in which
every ordered pair of elements uniquely determines a product. The Cayley table of the group
(Zp,+) provides such a reduced form Latin square for any n € Z. For example, the reduced
Latin square

012345
123450
L,_|234501
: 34501 2
450123
|50 1 2 3 4 |

of order 6 is the Cayley table of (Zg,+). The Cayley table of the group (Z,,+) is also an
example of a symmetric Latin square, that is, a Latin square such that L(i,j) = L(j,¢) for all
i€ R(L),j € C(L).

In addition to symmetry, a Latin square L may also exhibit various other structural properties.
It may, for example, contain an s x s subarray that is itself also a Latin square, called a subsquare
of side s. If R" C R(L) and C' C C(L) are subsets of the row and column indexing sets, both of
cardinality s, then a subsquare is formally defined as the set of entries {(i,5) |i € R',j € C'} in
L. It is easy to see that, as a subsquare is embedded in a Latin square, a necessary and sufficient
condition for the existence of an subsquare of side s is that it contains exactly s different symbols.
For example, the Latin square

03615 42
3140265
6 425130
Lyy=|1 05 36 2 4
5216 40 3
4632051
| 250 4316 |

contains at least two disjoint subsquares, a subsquare of side 3 (shown in boldface), defined by
R ={0,1,3} and C" = {0,1, 3}, and a subsquare of side 2 (underlined), defined by R"” = {4,5}
and C” = {1,3}. A subsquare of side 2 of a Latin square L is also sometimes called an intercalate
of L [71].

The relationship between the Cayley tables of quasigroups and Latin squares extend naturally
to subquasigroups and subsquares. More specifically, the Cayley table of a subquasigroup (G’, o)
of a quasigroup (G, o) is a subsquare of the Latin square formed by the Cayley table of (G, o).

2.3. Latin squares 15

Conversely, an appropriately bordered subsquare of the Latin square formed by the Cayley table
of (G, o) is the Cayley table of a subquasigroup.

Interestingly, the largest possible subsquare of an n x n Latin square has sides s < |n/2 + 1]
due to a group theoretic result by Mann and McWorter [59].

Two important notions involving Latin squares are those of transversals and universals. Euler
[33] introduced the notion of a transversal of a Latin square under the name formule directriz
and it has also merely been called a directriz, notably by Norton [70]. A transversal V' of a Latin
square L of order n, is a set of n distinct, ordered pairs (i,7), one from each row and column
of L, containing all of the n symbols of L exactly once [24, Definition 1.27]. Transversals are
important in many constructions of Latin squares and have close ties to complete mappings in
quasigroups, as described in §2.2 and highlighted by the following result, which may be found
in [24, p. 345].

Theorem 2.2 ([24]). There is a one-to-one correspondence between the transversals of a Latin
square L and the complete mappings of a quasigroup (G,o) with L as Cayley table.

A wuniversal U of a Latin square L, on the other hand, is a set of n distinct, ordered pairs (i, 7),
one from each row and column, containing only one symbol of L. A universal of L is therefore
the set of all the entries containing a single symbol in L, a particularly useful concept introduced
by Kidd et al. [53] in 2012 to facilitate the enumeration of specific classes of Latin squares.

Both transversals and universals may be expressed in permutation form. In a transversal per-
mutation v, it holds that v(i) = j if (i,j) € V, while in the universal permutation of (the
symbol) k, it holds that wg(i) = j if L(i,j) = k. In the Latin square L9 2, for example, the
main diagonal V' = {(0,0),(1,1),...,(5,5)} is clearly a transversal, while the universal of 0 is
given by Uy = {(0,0),(1,3),(2,6),(3,1),(4,5),(5,4),(6,2)}. The corresponding permutations

_0123456 _ (0123456 .
arev—(0123456) and uo—(0361542),respectlvely.

A Latin square containing a transversal in natural order on its main diagonal, like Ls o, is said
to be idempotent. Formally, an idempotent Latin square of order n has L(i,i) =i for all i € Z,.
A Latin square with a universal on the main diagonal is said to be unipotent.

2.3.2 Orthogonal Latin squares

According to Colbourn and Dinitz [24, Definition 3.1], two Latin squares of order n, L and
L', are orthogonal if L(i,j) = L(k,¢) and L'(i,j) = L'(k,¢) implies that i« = k and j = /.
Equivalently, orthogonality implies that every element of Z, X Z, appears exactly once among
the ordered pairs (L(i,7), L'(4,)) for i,j € Zy.

Latin squares were first formally studied by Euler when he considered the so-called “36-Officers
problem,” asking whether it is possible to arrange thirty-six soldiers of six different ranks and
from six different regiments in a square platoon so that every row and column of the platoon
contains exactly one soldier of every rank, and one soldier from every regiment [32]. Labelling
the ranks and regiments from the symbol set Z,,, it is clear that Euler was attempting to find
a pair of orthogonal Latin squares of order 6, where the entry in L(i,j) would indicate the
rank of the soldier in position (i,5) and L'(4, j) his regiment. Euler was unable to find such an
arrangement of soldiers and continued to propose what has become known as Euler’s Conjecture,
that no pair of orthogonal Latin squares order n exists when n = 4m + 2 for integer values of m
[32].

Euler’s expectation was lent some credence more than a century later when amateur French
mathematician Gaston Tarry proved in two papers that a solution to the “36-Officers problem”

16 CHAPTER 2. MATHEMATICAL PRELIMINARIES

(and hence to the special case of Euler’s Conjecture where n = 6) does, indeed, not exist [90].
Sixty years later, however, pairs of orthogonal Latin squares of order 10 [78] and order 22 [14]
were constructed, thereby disproving Euler’s Conjecture in general, before Bose et al. [13] showed
that it is possible to construct such pairs for all cases of Euler’s Conjecture, except when n = 6.

It should be noted that orthogonality may also be expressed in terms of transversals and univer-
sals. Specifically, if L and L’ are two orthogonal Latin squares, it is necessary that the entries in
every transversal of L correspond to a universal of L' [96, p. 183]. It follows that a Latin square
L has an orthogonal mate L’ if and only if L has n disjoint universals [29, Theorem 5.1.1], as
each of these transversals corresponds to a universal in L'. The Latin square L of order 2k with
L(i,j) = i + j (mod 2k), which is the Cayley table of the the group (Zak,+), is an example
of a Latin square without any transversals and therefore has no orthogonal mate. It may, for
example, be confirmed that the Latin square Ly 1 corresponding to the Cayley table of the group
(Zg,+) contains no transversals.

The notion of orthogonality generalises to sets of Latin squares Li, Lo, ..., Ly. Such a set is
called a k-set of mutually orthogonal Latin squares, abbreviated to k-MOLS, if L; and L; are
orthogonal for all 1 <7 < j < k. The set of Latin squares

0123 0123 [012 3
Mo —d3 2100 2301|1032
217311 0 3 217132 10|72 30 1] ("

230 1 [t 032 3210

for example, is a 3-MOLS of order 4.

MOLS have been shown to have important applications to coding theory [56], various subfields
of statistics including experimental design (notably by RA Fisher in [37] and [38]) and the
scheduling of sports tournaments (see, amongst many others, Keedwell [50], Kidd [52] and
Robinson [83]).

It is natural to consider the number of Latin squares in the largest possible MOLS of order n,
denoted by N(n). It is possible to establish an upper bound on N(n) by considering a MOLS
with the property that every Latin square has been relabelled so that the first row appears in
natural order. There are clearly exactly n—1 possible symbols for the first element in the second
row of the Latin square and, therefore, at most n — 1 Latin squares in the MOLS. This informal
argument may be formalised (see, for example, Dénes and Keedwell [29, Theorem 5.1.5]) to
establish the well-known result that N(n) <n — 1 for all natural numbers n > 1. The example
above shows that such an (n — 1)-MOLS of order n, or complete MOLS, exists for n = 4 and in
general, complete MOLS of order n may be constructed whenever n is a prime power!. Bruck
and Ryser [17] showed that there is also an infinite subset of orders n € N for which N(n) < n—1.

2.3.3 Operations on Latin squares

A topic very close to the central theme of this thesis is the notion of equivalence classes of Latin
squares and MOLS. Two Latin squares L and L’ of order n are equal if L(i,j) = L'(i,j) for
all 4,j € Zy,; otherwise they are distinct. The appearance of a Latin square may, however, be
changed in a number of very natural ways without changing any of its underlying structural

LA proof of this result was initially proposed by EH Moore, but is often attributed to RC Bose due to his
finding that a complete MOLS of order n exists if and only if there exist a finite projective plane of order n [12].
Finite projective planes, however, fall outside the scope of this study. See Mann [59], Dénes and Keedwell [29,
Chapter 8] for further information on the equivalence of finite projective planes and complete MOLS, and Lam
[65] for a proof of the non-existence of a finite projective plane of order 10.

2.3. Latin squares 17

properties. Specifically, any of the n! permutations of the elements of Z, may be applied to the
column, row and symbol indexing sets of a Latin square to generate another, possibly distinct,
Latin square. Applying a permutation p to the column indexing set of a Latin square L in which
the element (i, j) is mapped to k produces another Latin square L’ for which (i, p(j)) is mapped
to k, in other words, L(i,5) = L'(i,p(j)). Similarly, when applying a permutation to the row
and symbol sets of L to form L” and L", respectively, it holds that L”(p(i),j) = L(i,j) and
p(L"(i,7)) = L(i,j). For example, applying the permutation p = (8 1 g ;’) to the row, column
and symbol indexing sets of the Latin square

01 2 3
301 2
Ls=149 3 01
1 2 30
produces the Latin squares
01 2 3 01 3 2 01 3 2
301 2 30 21 10 2 3
L=\ 93 0| 552310 Lus=13 90 1|
2 3 01 1 2 0 3 2310

respectively. Combinations of permutations may also be applied to a Latin square. For example,
applying the permutation p to the rows of Lo3 and p. = (g é % g) and ps; = (8 ; g i’) to the
columns and symbols, respectively, results in the Latin square

Ly =

N O W
S = N W
= Ww o N
W N = O

in which each of the triples (i, 7, L(4, j)) is replaced by the triple (p(7), pc(5), ps(L(i,7))). Permu-
tations applied to the rows, columns and symbols may thus be applied in any order. Multiple
permutations may also be applied consecutively to, say, the rows of a Latin square, in which
case the resulting operations are equivalent to applying the composition of the permutations.
For example, applying a permutation p, followed by a permutation ¢, to the rows of a Latin
square L has the effect of moving row i first to position p(i) and finally to position ¢(p(i)),
which is equivalent to simply applying ¢ o p to the rows of L. If one supposes that ¢ = p~! it is
clear that transformations of Latin squares may be reversed by applying the appropriate inverse
permutations. These properties also hold for the columns and symbols of a Latin square. Any
Latin square may be transformed to standard form by applying a series of permutations to its
rows and columns. For example, Lo 3 may be transformed to standard form by applying the

permutation (8 é g i’) to its rows.

The six conjugates of a Latin square L may be found by applying a permutation uniformly to
the set of triples (i, 7, L(i, 7)) for all 4,5 € Z,. Thus applying the permutation (8 i 3) clearly
leaves a Latin square invariant, while applying ((1) (1) g) yields the transpose LT of L. The trans-

formations (8 é f) and (g 1 3) yield the row and column inverses of L, denoted by L' and
—LL, respectively, while the transformations ([1) ; g) and (g (1) f) yield their respective transposes,
(L7YHT and (T'L)T. Let +,7 and p denote the conjugate operation which leaves a Latin square
invariant, replaces a Latin square with its transpose and replaces each row of a Latin square
with its inverse, respectively. The composition v = 7 o0 p o 7 denotes the conjugate operation

which replaces every column of a Latin square with its inverse to form 'L, while Top = po~y

18 CHAPTER 2. MATHEMATICAL PRELIMINARIES

maps L to its transpose (L~1)7. Finally, the composition 7oy = po is the operation which
maps ~! L to its transpose (T1L)T.

Permutations may also be applied to the row, column and symbol sets of a k-MOLS. However,
any permutation applied to the row or column indexing sets must be applied to each of the k
squares to maintain orthogonality. The symbol set of any Latin square in the k~-MOLS may be
permuted independently of the others without affecting orthogonality. Applying the permutation
p= (8 } ?2) g) to the rows of My and the permutation ¢ = (g } g 3) to the symbols of Ly, for

example, yields the 3-MOLS

31200 0123 0123
Mos— 0213/ |23 01 11032
22712 0 3 1{’|1 0 3 2[’[3 2 1 0| (’

1302 3210 [2301

A set of mutually orthogonal Latin squares in which the first row of every Latin square is in
natural order and in which the first column of exactly one of the Latin squares are in natural
order is called a standardized set [29, p. 159]. The set Ma ; is already a standardised set, while
M o may be transformed into a standardised set by applying, for example, the suitable inverses
of the operations applied previously to the rows and the symbols of L.

Analogously to the way in which the conjugates of a single Latin square are found, the (k + 2)!
conjugates of a k-MOLS may be generated by applying a permutation uniformly to the (k+2)—
tuples (i, 7, Lo(4,7),. .., Lr_1(i,7)). Indeed, the conjugates of a single Latin square is the special
case of the conjugates of a k-MOLS, where £ = 1. These (k + 2)-tuples are the columns of
what is known as an orthogonal array of degree k + 2 and order n, denoted OA(n, k + 2), which
traditionally takes the form

0 0 (n—1) (n—1)
0 1 (n—2) (n—1)
OA = L(0,0) Ly(0,1) Lo(n—1,n—2) Lyin—1,n—1)
| L (0.0) Liy(01) - Iya(n—Ln—2) Lyn-ln-1) |

and has the property that no 2 x n? subarray contains a repeating column, as this would
mean that the corresponding Latin squares are not pairwise orthogonal. The orthogonal array
corresponding to My o, for example, is

0oo0o00111122223333
01230123012 3¢0123
OA27=13 1200213 203113202
0123230110323 210
0123103232102 3201

Uniformly applying a permutation to the tuple (i, j, Lo(4,7), ..., Lg—1(i,7)) is equivalent to re-
ordering the rows of the orthogonal array of a k-MOLS. For a 2-MOLS there are 24 potential
conjugates, a few of which are of sufficient interest to discuss briefly. The permutation which
interchanges the first two elements of the tuple (7, j, Lo(i,), . . ., Lg—1(i, 7)) yields the transposes
of each of the Latin squares. A permutation which fixes the first two elements while reordering
the remaining elements has the effect of reordering the bottom rows of the orthogonal array and
therefore changes the order of the Latin squares in the corresponding MOLS.

2.4. Chapter summary 19

Orthogonal arrays are also useful because they provide a way of constructing sets of mutually or-
thogonal Latin squares of specific new orders from existing MOLS. For example, it may be shown
that if there exists an OA(n;, k) and an OA(ng, k), it is possible to construct an OA(ning, k)
[29, Theorem 11.1.2]. This implies that if sets of k-MOLS of orders n; and ng exist, it is possible
to construct a k-MOLS of order ning. This ability to construct orthogonal arrays and MOLS
from existing MOLS is often used in proving the existence of sets of mutually orthogonal Latin
squares of specific orders. Indeed, it was by finding constructions of 2-MOLS of orders 10 and
22 (and later in general for all orders 4n + 2 where n > 2) that Bose et al. [14] disproved Euler’s
Conjecture. A number of different methods of constructing MOLS exist, but fall outside the
scope of this thesis. The interested reader is referred to Dénes and Keedwell [28, 29] for an
introduction to the recursive construction of MOLS.

2.4 Chapter summary

The notion of a permutation was defined in §2.1. It was shown that permutations may be ordered
lexicographically and that the composition of permutations reveal their cyclical nature. It was
illustrated how the cycle structure of a permutation defines its type, and it was mentioned that
permutations are in the same conjugacy class if and only if they are of the same type.

The well-known group axioms were stated in §2.2 and the notions of a Cayley table and of a
quasigroup were reviewed very briefly.

A concise introduction to the theory of Latin squares was presented in §2.3. The notion of a
Latin square was defined in §2.3.1 and mention was made of the link between Latin squares and
quasigroups before the notions of transversals and universals were introduced. Orthogonality
between Latin squares, and its generalisation to sets of k£ mutually orthogonal Latin squares,
were discussed in §2.3.2. In §2.3.3 the focus fell on the effect of allowing permutations to act
on the row, column and symbol indexing set of a Latin square or MOLS without changing its
underlying structural properties. The (k + 2)! conjugate operations of a k-MOLS of order n
were also reviewed.

A variety of operations on Latin squares and k-MOLS which partition the set of all Latin squares
or MOLS into equivalence classes will be considered in the following chapter, and an algorithm
for enumerating these equivalence classes will be presented.

20

CHAPTER 2. MATHEMATICAL PRELIMINARIES

CHAPTER 3

The enumeration of MOLS

Contents
3.1 The classification of Latin squares 21
3.2 A historical overview of the enumeration of Latin squares 24
3.3 The enumeration methodology adopted in this thesis 27
3.4 On the enumerability of larger-order search spaces 36
3.5 Chapter summary ot e e 41

The processes of enumerating equivalence classes of Latin squares and sets of mutually orthog-
onal Latin squares are the topic of this chapter. A number of transformations, together with
their respective transformation classes, are considered in §3.1, followed by a historical review of
attempts at enumerating these classes in §3.2. An exhaustive backtracking algorithm for the
enumeration of main classes of k-MOLS is presented in §3.3. Enumerating these main classes
is, however, computationally very expensive for k-MOLS of larger orders. The chapter therefore
closes with a discussion on techniques for estimating the sizes of these larger enumeration search
trees in §3.4.

3.1 The classification of Latin squares

As was mentioned in §2.3.1, a Latin square is the Cayley table of a quasigroup; it is therefore
an example of a groupoid. In order to classify Latin squares into equivalence classes it is first
necessary to consider the operations that may act on them and on groupoids in general. The
summary of operations on Latin squares in this section largely follows the description of Dénes
and Keedwell [29], except where mentioned otherwise.

An isotopism, in the notation of Dénes and Keedwell [29, §1.3], is an operation consisting of
an ordered triple of three permutations (6, ,) applied to a groupoid of order n. There are
(n!)3 different isotopisms that may be applied to a groupoid of order n, and it may be shown
that the set of all isotopisms forms a group if the product of two isotopisms (61, p1,%1) and
(02, p2,12) is defined as the ordered triple (6162, @192, ¥112) of permutations [29, p.122]. This
group is denoted by I, and it may be shown that I, is isomorphic to S, x S, x Sy, since each
of the permutations 6, ¢ and 4 is selected from the symmetric group® of order n. An isotopism

The symmetric group of order n, denoted S, is the set of all permutations of Z,. The reader is referred to
§2.2 for a brief introduction to basic group theoretic concepts.

21

22 CHAPTER 3. THE ENUMERATION OF MOLS

in which) is the identity permutation, denoted by ¢, is called a principal isotopism. It is clear
that the group of all principal isotopisms is contained in I,, and has a cardinality (n!)2.

An autotopism is an isotopism which leaves the groupoid on which it acts invariant. A trivial
example of an autotopism is the triple of identity permutations (¢, ¢,¢). The set of all autotopisms
forms a subgroup of I,. Any two of the operations of an autotopism determines the third, and the
number of autotopisms may therefore not exceed (n!)2. A principal autotopism is an autotopism
for which ¢ = «. Because a principal autotopism is determined by knowledge of either of the non-
identity elements, a groupoid of order n admits at most n! principal isotopisms. Furthermore,
the set of all principal autotopisms is contained in the set of all principal isotopisms as well as
the set of all autotopisms.

Recall that an isomorphism is an isotopism in which § = ¢ = 1. It is therefore clear that the set
of all isomorphisms is contained in the set of all isotopisms. An automorphism is an isomorphism
which leaves the groupoid on which it acts invariant. Note that the set of all automorphisms is
contained in both the set of all isomorphisms and the set of all autotopisms. The only isotopism
which is both an autotopism and an automorphism is (¢, ¢,¢).

The notion of the conjugates of a groupoid, as they apply specifically to a Latin square, was
discussed in §2.3.3 and may be used to form a larger set of transformations which contains all
the elements of I, as subset. Specifically, a paratopism is an ordered set of four operations
(0, 0,1, €), where 0, 0,1 € S,, and € is one of the conjugate operations described in §2.3.3. A
paratopism may be viewed as an isotopism which additionally allows a conjugate operation or,
alternatively, an isotopism is a paratopism for which the conjugate operation is the identity (i.e.
€ =). Some variations on the notion of a paratopism for which any two of 6, ¢ and v are equal
have also been studied [53].

The relationships between the sets of transformations described above are summarised graphi-
cally in Figure 3.1.

Paratopisms

Isotopisms

Autotopisms

Isomorphisms

Automorphisms

FIGURE 3.1: The relationships between the transformations of paratopisms, isotopisms, autotopisms,
isomorphisms and automorphisms of Latin squares.

Before proceeding to consider these transformations acting on a Latin square L in further detail,
a number of concepts have to be clarified. In what follows, an operation is considered to be
either a permutation acting on R(L), C(L) or S(L), or a conjugate operation, in other words
a permutation acting on the elements of T'(L). A combination of such operations is henceforth
called a transformation. If a transformation acting on the set of all distinct Latin squares of
order n, denoted by €2,, forms an equivalence class, this class is called a transformation class.
A transformation class containing a specific Latin square L is referred to as the transformation

3.1. The classification of Latin squares 23

class generated by L.

Furthermore, note that all the transformations discussed above may be defined by a set of four
operations (6, ¢, 1, €), where 6, p,1 € S,, and € is a conjugate operation. In the case of a Latin
square L, 8 may be defined to be the operation acting on the rows of L, while ¢ and v are
operations acting on the columns and symbols of L, respectively. Alternatively, following the
notation of Kidd [53], the type of a transformation applied to a Latin square L may be specified
somewhat more flexibly as a tuple (m,,...,m,,€), where t; € {r,c,s,re,rs,cs,res}, 1 <k <3
and € is a conjugate operation. Here 7 represents a specific permutation of the same order
as L and the subscript indicates whether it is applied to the rows, columns or symbols of L,
or to some combination of them. A paratopism, for example, is a transformation of the type
(7, e, Ts, €) since there are no restrictions on the operations applied to R(L),C(L) or S(L), or
on the conjugate e. An isomorphism acting on L, on the other hand, is of the type (m,s,¢) since
the same permutation is applied to the rows, columns and symbols of L and the conjugate is
restricted to the identity operation. In this case, and for all isotopisms, the conjugate may be
omitted from the definition of a type because it is restricted to the identity operation, as may
any of the subscripts 7, c or s.

If there exists a paratopism transforming a Latin square L to another Latin square L’ of the
same order, then L is paratopic to L', denoted by L ~ L'. Furthermore, L and L’ are said to be
in the same main class. Since any Latin square L is a member of exactly one main class, the set
of all Latin squares is partitioned into main classes. Three Latin squares of order 4 may be seen
in Figure 3.2. In this example, L3 is paratopic to Lz by the (7,s)-transformation (8 % 3 g),

but L3, and L3 3 are not paratopic and reside in separate main classes.

01 2 3 01 2 3 01 2 3
1 230 1 30 2 103 2
Lsi=145 3 ¢ 1 Liz=1 5 g 3 1 Lss=15 3 ¢ 1
301 2 3210 3210

FIGURE 3.2: Three Latin squares of order 4.

Kidd [53, Definition 4.1.4] introduced the notion of a CS-paratopism, which is a (7, 7, p)-
transformation (recall from §2.3.3 that p denotes the permutation (8 ; %) applied to T'(L)). The
(7p, Tes, p)-transformation class is called the CS-paratopy class, and two Latin squares in the
same CS-paratopy class are CS-paratopic. Similar transformations may be found by replacing
the prefixes “CS” and “(m,, 7es, p)” by “RC” and “(7s, mpe, 7)7, or “RS” and “(7e, 7rs,7y),” where
7 and ~ are the respective conjugate operations from §2.3.3, but these transformations have been

shown to be equivalent to RC-paratopisms [53, Proposition 4.1.1].

If there exists an isotopism (isomorphism) transforming a Latin square L to another Latin square
L’ of the same order, then L is isotopic (isomorphic) to L', denoted by L ~ L' (L = L'). Clearly,
if two Latin squares are isotopic or isomorphic, then their underlying quasigroups share the same
equivalence relation. The Latin square L, together with all its isotopes, form an isotopy class.
Isotopy classes are disjoint and each isotopy class is fully contained in a main class generated by
the same square. An isomorphism class consists of a Latin square L and all its isomorphic Latin
squares, and these classes are, in turn, fully contained in isotopy classes. The Latin square

L3y =

)

3
2
0
1

w N = O
N WO -

2
3
1
0
(o

for example, is isomorphic to L3 by the operation é % g) and therefore not isotopic to Lg 3.

24 CHAPTER 3. THE ENUMERATION OF MOLS

TABLE 3.1: The chief transformations in the classification of Latin squares, together with their types
and transformation classes.

Transformation Tuple Type Transformation class
Paratopism 0,0,,€) (Tp, e, s, €) Main
RC-paratopism (0,0,1,¢) (e, Tsy €) RC-paratopism
Isotopism 0, 0,1,1) (T y Ty Ts) Isotopy
Isomorphism (Tpy Tey sy €) (Tres) Isomorphism

The types of transformations and their respective transformation classes described above are
summarised in Table 3.1.

The extension of these transformations and transformation-classes to sets of mutually orthogonal
Latin squares is of particular interest in this thesis. The type of transformation for a k-MOLS
of order n includes the symbols ng) or €U if the operation my, or € is to be applied to L;,
respectively, for all 0 < 7 < k — 1. In addition to conjugate operations on individual squares
within the £&-MOLS, the symbol § is used to indicate that the transformation may contain any

of the (k + 2)! conjugate operations which act on the entire set of £ mutually orthogonal Latin

squares. A paratopism of a k-MOLS is therefore a (W,(no’l""’k_l), Wﬁo’l""’k_l),ﬂ'go), e ,ng_l), 9)-
. . . 0,1, k—=1) _(0,1,..k—=1) _(0) (k—1)
transformation, and the main class of k-MOLS is a (7, , Te S5 ey Ty ,0)-

transformation class. The set of three mutually orthogonal Latin squares of order 4,

Mszq =

N WO
O = N W
w N = O
_= o NN
SN W
N = =W

is, for example, paratopic to, and resides in the same main class as, the 3-MOLS Moy ; of order

4 in §2.3.2. This may be demonstrated, for example, by a (7rr,779’2),T)—transformation, where

the permutation (g } g g) is applied to the row set of Mg and where (8 é :,2) i’) is applied to the

symbol sets of L and Lo.

The following section contains an historical overview of previous enumeration attempts for cer-
tain transformation classes of Latin squares and sets of orthogonal Latin squares.

3.2 A historical overview of the enumeration of Latin squares

In addition to posing his now-famous question about the existence of a set of two orthogonal
Latin squares of order 6, Leonhard Euler was the first to consider the enumeration of Latin
squares and showed that there is one reduced Latin square of order 2, one of order 3, four
distinct reduced squares of order 4 and fifty six of order 5 [33].

These values were subsequently confirmed by Cayley [21] in 1890, who also provided a formula
for determining the number of possible second rows of a Latin square if the first row is assumed
to be in natural order. Frolov [42] proceeded, in that same year, to enumerate the 9408 reduced
Latin squares of order 6 and claimed that there are 221276 160 reduced Latin squares of order
7, although this value was later found to be incorrect. He additionally proposed recurrence
relations for the number of reduced Latin squares of a given order, as well as the total number
of Latin squares of order n in terms of the reduced Latin squares of order n and the number of
Latin squares generated by the cyclic group of order n.

3.2. A historical overview of the enumeration of Latin squares 25

The next development in the enumeration of Latin squares occurred when MacMahon [58] pub-
lished a full algebraic solution for Latin squares of finite order in 1898. His algebraic expression
contains terms for each of the ways in which the Latin square can conceivably be completed
and those terms which are in conflict with the requirements of completing a Latin square are
eventually cancelled out. The manipulation of this algebraic expression is considered to be more
difficult than the direct enumeration by exhaustive searches [29, p.141], and the majority of
subsequent work has therefore focused on exhaustive searches.

In 1900, Tarry [90] partitioned the reduced Latin squares of order 6 into seventeen families
(twelve of these families were isotopy classes and five families were the unions of pairs of isotopy
classes which are equivalent when taking the transpose) and successfully showed that none of
these families admits orthogonal mates, thereby proving the special case of Euler’s conjecture for
Latin squares of order 6. There is some evidence that the non-existence of a 2-MOLS of order 6
was established approximately sixty years earlier by an assistant to a German astronomer [45],
but none of his works remain in existence.

In 1930, Schonhardt [86] correctly counted two isotopy classes of reduced Latin squares order 5
and twenty two isotopy classes of order 6. He was also among the first to investigate isomorphism
classes of Latin squares and showed that there are six isomorphism classes of order 5 and 109
of order 6.

Later papers by Fischer and Yates [39] and by Norton [71] contained attempts at classifying Latin
squares into equivalence classes based on the nature of their main diagonals. These authors
introduced the notion of an intercalate (see §2.3.1) and called the isotopy classes and main
classes of Latin squares transformation sets and species, respectively. In 1934, Fisher and Yates
found 9048 reduced Latin squares of order 6 which may be arranged into twelve main classes
and twenty two isotopy classes, ten of which may be paired up since they are equivalent after
applying the transpose operation, as previously found by Tarry and Schénhardt. Norton [71]
classified Latin squares of order 7 according to the numbers of intercalates that they admit and,
in 1939, found 146 main classes of Latin squares of order 7 and 16 927 968 distinct reduced Latin
squares of order 7. The number of intercalates of a Latin square is of a class of properties of
particular interest in the enumeration of Latin squares which is preserved under paratopisms
(recall, from §2.3.1, that these properties are called main class invariates).

In 1948, Sade [85] used a different method to enumerate the reduced Latin squares of order 7
and found 16 942020 such squares. The discrepancy with Norton’s above-mentioned count was
later shown to be the result of Norton miscounting a single main class — there are, in fact, 147.
Sade exhaustively constructed Latin squares row-by-row and his method is of interest in the
development of an enumeration algorithm adopted in this thesis. His ideas were also adapted
for computer use by Wells [97] in 1968, who confirmed his number of reduced Latin squares of
order 7, counted 535281401 856 reduced Latin squares of order 8 and estimated that they may
be partitioned into at least 250 000 main classes.

Brown [16] completed the enumeration of isotopy classes of Latin squares of orders n < 8 in
1968 by finding 1676 257 isotopy classes of Latin squares of order 8.

A number of authors have also attempted the enumeration of sets of orthogonal Latin squares.
Initial work was prompted by Euler’s Conjecture and dealt with the existence of orthogonal sets
of Latin squares. Much later, complete sets of orthogonal Latin squares were considered (recall
from §2.3.2 that a set of orthogonal Latin squares of order n is complete if it contains n — 1
Latin squares). Since every complete set of orthogonal Latin squares is equivalent to exactly
one finite projective plane of order n (see Bose [12] for further details), many researchers have
focussed their enumeration efforts for Latin squares on finite projective planes. It is well-known

26 CHAPTER 3. THE ENUMERATION OF MOLS

that finite projective planes exist whenever n is a prime power. Bruck and Ryser [17] have also
shown that there are infinitely many orders for which no finite projective plane exists. A number
of authors? have contributed to the current knowledge that there is, up to isomorphism, only
one finite projective plane of each of the orders 2 < n < 8; correspondingly, the (n — 1)-MOLS
of order n for 2 < n < 8, n # 6 each consists of a single isotopy class. There are also four
isomorphism classes of projective planes of order 9 [36], and none of order 10 [55].

Owens and Preece [76] found in 1995 that, if one were to extend the definition of an isotopy
class to a set of k mutually orthogonal Latin squares, the 8-MOLS of order 9 may be partitioned
into nineteen isotopy classes. Burger et al. [53] enumerated the main classes of k-MOLS of
orders 3 < n < 8 for all k < n in 2011, as well as those of self-orthogonal Latin squares® up to
order 10 [20]. The main class representatives of 2-MOLS of orders 3 < n < 8 are also available
on McKay’s website [61]. Finally, McKay et al. [62] have argued heuristically that there are
approximately 101 distinct 2-MOLS of order 10, although the number of main classes remains
unknown. The numbers of main classes k-MOLS for orders n € {3,4,...,10} are summarised
in Table 3.2.

TABLE 3.2: The number of main classes of k-MOLS of order n € {3,4,...,10}

k
n 2 3 4 5 6 7 8 9
3 1
4 11
5 1 1 1
6 0 0 0 0
7 7 1 1 1 1
8 2165 39 1 1 1 1
9 >1 >1 >1 >1 >1 >1 7
10 >1 7 0?2 72 0 0 0

It is perhaps fitting to conclude this section on the history of the enumeration of Latin squares
by mentioning a topic which has led to many recent investigations into orthogonal Latin squares,
namely the size of the largest set of orthogonal Latin squares of order n, denoted by N(n) [62].
It is clear that N(n) has been determined for all n < 9 and that 2 < N(10) < 6. Determining
whether or not there exists a 3-MOLS of order 10 (and thereby deciding whether N(10) =2 or
N(n) > 3) is a celebrated open problem in design theory.

It is natural to ask, given the number of main classes of k-MOLS of order n, whether this
information is of assistance in the enumeration of (k + 1)- or (k — 1)-MOLS of order n.

After perhaps the most comprehensive search for 3-MOLS of order 10 to date, McKay et al. [62]
concluded that it is computationally infeasible, using current computing technology, to construct
3-MOLS of order 10 by attempting to add an additional Latin square to pairs of orthogonal Latin
squares of order 10. It is expected in general that knowledge of the main classes of (k—1)-MOLS
of order n will be of little assistance in the enumeration of main classes of k-MOLS of order n.
Indeed, the time required to enumerate main classes of mutually orthogonal Latin squares of a
specific order n decreases as k increases. Therefore, even if it were somehow possible use class
representatives of (k—1)-MOLS for the generation of the main classes of k~-MOLS, this approach

2The interested reader is referred to Veblen and Wedderburn [95] for results on orders 2, 3 and 4, MacInnes
[57] for order 5, Bose and Nair [15] for order 7 and Hall et al. [46] for order 8.
3A Latin square L is self-orthogonal if it is orthogonal to its transpose LT.

3.3. The enumeration methodology adopted in this thesis 27

would still require that the most computationally intensive of the enumerations be completed
first. Furthermore, although the existence of a k-MOLS of order n implies the existence of all
smaller sets of mutually orthogonal Latin squares, it is not possible to determine the number of
main classes of ~-MOLS of order n for £ < k from class representatives of k-MOLS of order n.
Independent enumerations are therefore required for 2-MOLS of order n, for 3-MOLS of order
n, and so on.

One of the objectives in this thesis is to sow the seeds of a potential, eventual contribution to-
wards the celebrated question on the existence of 3-MOLS of order 10 by designing a distributed
algorithm for enumerating main classes of MOLS. The nature of such enumerations forms the
focus of discussion in the following section.

3.3 The enumeration methodology adopted in this thesis

As mentioned in the preceding section, Sade [85] was among the first researchers to enumerate
classes of Latin squares by exhaustively constructing Latin squares row-by-row. This was done
by successively constructing the k£ x 7 Latin rectangles for £k = 1,2,...,7 which are in separate
isotopy classes. The (k + 1) x 7 Latin rectangles were formed by adding rows to the respective
k x 7 Latin rectangles and eliminating those that have equivalent mates under permutations to
the row, column and symbol sets. The total number of squares was found by summing over the
numbers of equivalent squares and their resulting completions. This method may be illustrated
by considering the enumeration of reduced Latin squares of order 4. In this case, the first row
must consist of the elements of Z,, in natural order, after which there are three possible second
rows, specifically

where the symbol “.” is used as a placeholder representing an as yet unspecified Latin square
entry. However, applying the permutation (8 } § g) to the rows and symbols of Lz shows that
it is isotopic to Ls 5, and so there are two isotopy classes of 2 x 4 Latin rectangles. There is only
one possible third row for Lz s, [2 3 0 1], and therefore only one possible completion to a Latin
square. Lz 7 has two possible third rows, [2 3 0 1] and [2 3 1 0], which may be extended into

two possible completions. The feasible completion of Lg 5 is

01 2 3 01 2 3 01 2 3
1230 _ 103 2 10 3 2
Lis=1 9 g g q [PWhileDso=1], 5 (; |adlsio=1|, 3 4
301 2 3210 320 1

are the possible completions of L3 7. In this case there are four reduced Latin squares of order
four in total, since there are two 2 x 4 Latin rectangles in the first equivalence class, each of
which completes to a single reduced Latin square, and a single Latin rectangle in the second
equivalence class which completes to two further reduced Latin squares.

This procedure may be expressed formally as a backtracking algorithm, in which a solution is built
up one step at a time, and is an example of an exhaustive search, since all feasible solutions are
pursued. Generally, in backtracking algorithms, pruning methods are used to avoid considering

28 CHAPTER 3. THE ENUMERATION OF MOLS

unnecessary options. In Sade’s algorithm above, for example, L3¢ was pruned away because it
is equivalent to L35, and would thus have the same number of completions as Ls 5.

A number of distinct combinatorial enumeration problems may, in fact, be solved by the method
of backtracking. Generally, in these problems, the solution may be expressed as a list of selected
variables X = [zg,1,...,Zn_1], where the nature of x,z1,... depends on the problem specifi-
cations. These variables may, for example, be binary decision variables representing the selection
of a vertex or an edge of a graph. The value of x; is, however, always selected from a possibil-
ity set P; for all 0 < ¢ < n — 1. Elements are selected successively and for a partial solution
X = [xo,x1,...,2¢—1], all members of Py x P, X ... X Py are considered, either explicitly or im-
plicitly, for all 0 < ¢ < n—1. The search may be visualised as a rooted search tree in which every
node represents a partial solution and branching takes place on the elements of the possibility
set. The length of the solution list is the depth of the node representing that solution. Typically,
the problem constraints mean that only a subset of the elements of P; is feasible at each level
of the search tree — this selection is called the choice set, denoted by C;. The partial solution
X = [zo,x1,...,20-1,y], where y € P, but y & Cj;, is not considered, as it, and all further nodes
with X = [xo,1,...,2¢_1,y] as root, are infeasible. The subtree rooted at the partial solution
X = [zo,x1,...,2¢-1,y] is said to be pruned away and becomes inactive. An active node of the
search tree is defined as a partial solution which has feasible children.

A pseudo-code listing of a general backtracking algorithm is presented in Algorithm 3.1 as it is
found in Kreher and Stinson [89, §4.2]. Processing a partial solution, as in Step 3, may take any
number of forms, such as outputting it to the screen, saving it to memory or comparing it to
the current best known solution. It is clear that, if the run-time or complexity of a backtracking
algorithm is to be improved, the bulk of such improvements must take place in either the way
that the possibility set is computed or in the computation of the choice set.

Algorithm 3.1: Backtrack(¥)
input : An index /¢
global : A partial solution X = [z, x1, .. .]

1 begin

2 if [xo,x1,...,2¢—1] is a feasible partial solution then
3 L process it

4 Compute Cy

5 for every x € Cy do

6 Ty < T

7 Backtrack(¢ + 1)

8 end

It is perhaps worthwhile to consider an example of a simple backtracking algorithm before turn-
ing to the design of an algorithm taylor-made for the enumeration of sets of mutually orthogonal
Latin squares. In a classical combinatorial optimization problem, called the knapsack problem,
n objects, labelled og, 01, ...0,_1, are considered, each of which has a weight or cost associated
with it, denoted by wq, w1, ...w,—1, as well as a profit or benefit, denoted by pg,p1,-..Pn_1-
The knapsack problem requires a selection of objects to pack into a knapsack, so as to maximize
the total profit of the items in the knapsack while constraining the total weight of the items
selected to be at most the capacity of the knapsack, denoted by M [89]. One possible solution
method entails associating a binary decision variable x; with object o0;, so that z; = 1 if the
object o; is selected in the final solution, or x; = 0 otherwise, for all = 0,...,n— 1. Clearly, the

3.3. The enumeration methodology adopted in this thesis 29

objective is to maximise Z?;()l x;pi, subject to Z?;()l x;w; < M. A naive solution may iterate
over all possible n-tuples [z, z1,...x,_1], test every solution for feasibility and in the process
update the best solution found thus far. Algorithm 3.1 provides a way of constructing the 2™
possible n-tuples if Cy = {0, 1}, in other words, if the choice set consists of the binary variables.
Of course, it is likely that not all of the n-tuples are feasible. Indeed, it is often possible to
recognise early on during the construction of the search tree that a k-tuple will be infeasible for
some k < n. The algorithm may therefore be improved by introducing a pruning rule aimed at
eliminating infeasible partial solutions.

Returning to the enumeration of Latin squares, it is easy to see that Sade’s algorithm may be
cast as a backtracking algorithm in which a solution consists of a list of rows which make up
a reduced Latin square and in which pruning takes place on the basis of equivalence classes.
This is, however, not the only way to design a backtracking algorithm for the enumeration of
mutually orthogonal Latin squares, and Burger et al. [20] proposed an alternative approach in
which the partial solution list is the ordered list of universals [u(()o), u(()l), . ,u;k__f), uff__ll)] and
in which branching takes place on the inclusion of the next universal, instead of on the inclusion
of rows. As Kidd [53, §5.1] describes, the chief difference between the two approaches lies in
the fact that, in the first case, rows are inserted subject to the restriction that every partial
universal formed in this way must intersect with the partial universals in the other squares at
most once, while the second approach is based on the insertion of universals and subject to the
constraint that every universal must intersect exactly once with all the universals that have are
already been inserted in the other squares. The first approach is thus less restrictive, leading
Kidd [53] to believe that the second approach may be an improvement on the first. Indeed, this
has been observed to be the case — the insertion of universals has led to faster enumerations
and enumeration trees with fewer branches in every one of the enumerations for k-MOLS of

order n where n < 6 and k£ < n.

A partially completed Latin square of order n is an n X n array with at most one symbol from the
set Z, in every position and in which no symbol is repeated in any row or column. A partially
completed Latin square of order n may, for example, be obtained by inserting a subset of £ < n
universals in which no pair of universals intersects. Note that the Latin rectangles found in
the intermediate steps of Sade’s enumeration algorithm are also special types of partial Latin
squares by this definition, as are completed Latin squares. A partial k-MOLS of order n is a set
of k pairwise orthogonal partial Latin squares.

For the purposes of this discussion, a partial &~-MOLS M of order n consisting of the univer-
sals [u[(]o),uél), ... 7u§£)] is said to be on level i - £ of the enumeration search tree that will be
constructed. The level i - (k — 1) is simply referred to as level i, since every symbol up to and

including 7 has been inserted into all of the Latin squares of M.

In the enumeration of transformation classes of Latin squares and mutually orthogonal Latin
squares, it is sufficient to count a single element of every transformation class. An ordering may
be imposed on the Latin squares of order n to ensure that there is a single, unambiguous element
representing every transformation class. Without loss of generality, this element is selected to be
the lexicographically smallest element and is called the class representative of a transformation
class. The counting of transformation classes is therefore equivalent to the counting of class
representatives. More specifically, a Latin square L is defined to be lexicographically smaller
than a Latin square L', denoted by L < L', if uj, < u}, where uy € U(L), uj € U(L') and
u; = u} for all u; € U(L), u;, € U(L') and ¢ < k. In other words, L is lexicographically smaller
than L' if, for some k € Z,, the first k& universals of L and L' are equal, and L contains a
lexicographically smaller universal in the (k4 1)-th position.

30 CHAPTER 3. THE ENUMERATION OF MOLS

This notion of a lexicographical ordering of members of a transformation class of Latin squares
may be extended to sets of k¥ mutually orthogonal Latin squares, where the relation is denoted
by the symbol <. Two k-MOLS, M = [u(()o),u(()l), o ukY u(k_l)] and M’ = [ug(o),ug(l), e

»n—1 1 ¥n—1
1(k—=2) 1(k—-1)
Up—1 s Up—1

ugj) and u;(J) for i € Z, and j € Zj, in the order presented until the universals differ, in which
case the one k-MOLS is lexicographically smaller than the other, or until all universals have
been compared, in which case M and M’ are lexicographically equal and therefore the same
k-MOLS. The universals of a k-MOLS of order n are thus compared symbol-by-symbol so that
all the O-universals in the respective Latin squares are considered before continuing with the
l-universal in the first square, etc. Note that for both partial Latin squares and partial MOLS
there may be empty universals which have not yet been assigned. If the relationship between
two Latin squares or MOLS has not yet been established by the time that the first such empty
universal is encountered, the comparison is inconclusive and all further universals are ignored.
A lexicographical comparison of the two Latin squares

], may be lexicographically ordered by comparing the corresponding universals

0 1 0o - 2
0
L3 = and L3 12 =

1 2 .0 - |’
1 - -0 S 2 .0

S =

for example, is inconclusive since the zero universals are equal, and L3 12 does not contain a
universal corresponding to the 1 symbol. However, if the two 2-MOLS

M3z = and M33 =

0 3 0 2 0
3 0 2 0 3
1 21713 1 1
2 1 1 3 2

— NN O W
w N = O
O~ W
N WO~
— O W N

1 2 1 3 1 2
2 1 3 1 2 1
0 3 2 0 0 3
30 0 2 3 0
of order 4 are compared, the first difference occurs at ugl), the respective 1-universals in the
second Latin square, implying that Msas < Mgz3. This lexicographical ordering allows for
the orderly generation of class representatives by a recursive backtracking algorithm, and the

following notions assist in streamlining the computation of the possibility and choice sets.

In §3.2 it was mentioned that invariants play an important role in enumeration algorithms since
they may remain unaltered by transformations. In the enumeration of mutually orthogonal
Latin squares a very useful invariant is the relative cycle structure of two permutations, or in
this specific case, universals. For a k-MOLS of order n, the relative cycle structure of two

Z(j) and uém) is defined as the cycle structure of

o (u9)

universals u

For a proof that the relative cycle structure is invariant under permutations performed on the
rows and columns of a k-MOLS or the symbols of any of the individual Latin squares, and also
under the conjugate operations which transpose every Latin square in the k.-MOLS, or changes
in their order, the interested reader is referred to [53, p.72-73]. It may further be noted that, due
to the orthogonality of the Latin squares in a k-MOLS, every relative cycle structure has exactly

one fixed point. The relative cycle structure of two universals (8 % ? i g g) and (g (1] ?) “;’ j g) is

therefore the cycle structure of (g (1) 52) :I’ j g) o (8 ; % g g i) = ((1) (1) Z ‘3 g g), which is z12923.

A further useful notion is that of a row-reduced k-MOLS of order n, or a k-MOLS in which
the first row of every Latin square is in natural order. Any k-MOLS may be transformed to a

3.3. The enumeration methodology adopted in this thesis 31

row-reduced k-MOLS by applying a relevant symbol permutation to each of the Latin squares,
and so it is only necessary to consider row-reduced Latin squares when enumerating main classes
of MOLS. A row-reduced Latin square also has the property that the universals of every Latin
square are lexicographically ordered. Kidd [53, p.73-74] proved the following lemma with respect
to relative cycle structures of row-reduced Latin squares.

Lemma 3.1. [53, Lemma 4.3.3] For any i,{ € Z, and j,m € Zj the universal permutations
ul(j) e UM) and ugm) € UM) in a row-reduced k-MOLS M = {Ly, Ly,...,Ly_1} of order n
may be mapped to the universal permutations v((]o) e UM') and v(()l) e UM') of a new row-
reduced k—M(OO)LS M ={Ly, Ly,...,Lx_1} of order n, respectively, using a paratopism in such

a way that vy~ is the identity permutation and v[()l) 18 a cycle structure representative.

Using the facts that the relative cycle structure of any pair of universals of k-MOLS of order n
is invariant under the operations described above, and that pairs of universals may be mapped
to the zero universals in the first two Latin squares by Lemma 3.1, which are exactly those

universals considered first when lexicographically ordering MOLS, Kidd derived the following
sufficient conditions for identifying when a k-MOLS of order n is not a class representative.

Theorem 3.2. [53, Theorem 4.3.2] If M = {Lo,...,Ly_1} is the lexicographically smallest
row-reduced k-MOLS of order n in its main class, and if ul(-j) is the universal permutation of
i € Ly, in Lj, then

(a) u(()O) is the identity permutation,

(b) uél) s a cycle structure representative, and

(o, (m)

iUy is not lexicographically

smaller than the cycle structure of u(()l) e UM) for alli,j € Zy and j,m € Zy,.

(c) the relative cycle structure of two universal permutations u

It is important to note that the characteristics of a k-MOLS in Theorem 3.2 are shared by
main class representatives, but that they are not sufficient conditions for identifying main class
representatives. Theorem 3.2 is therefore most useful in identifying those row-reduced k-MOLS
of order n which do mot have the potential to be completed to a main class representative,
thereby providing the first criterion by which partial MOLS may be safely pruned away from
an enumeration search tree. Note that any partial k-MOLS of order n which passes this first
search criterion must have u(()o) € U(M) as the identity permutation and uél) € U(M) as a cycle
structure representative.

The second criterion by which a partial MOLS may be pruned away from an enumeration
search tree is the existence of a lexicographically smaller paratopic MOLS, because the defining
property of a main class representative is that it is the lexicographically smallest MOLS in its
main class. By Lemma 3.1, any pair of universals may be mapped to the zero universals of the
first two squares and it is clear that the mapping is only necessary for those pairs of universals
(ugj),ugm)) € UM) x U(M) for j # m with the same relative cycle structure as ul(j) and uém)
(which is simply the cycle structure of ugm)). After mapping (uEJ),uém)) e UM) xUM) to
(v(()o),v(()l)) e UWM') x U(M’), where M’ is the k-MOLS resulting from this transformation, it
has to be verified that M’ has no paratopes that are lexicographically smaller than M.

Testing for the existence of such a lexicographically smaller MOLS is, however, computationally
very expensive since there are potentially n! operations that may be applied to the rows and
columns of a MOLS, k - n! potential symbol operations that may be applied to the squares
individually, and a further (k + 2)! conjugate operations. There are clearly far too many trans-
formations to apply all of them, except for the very smallest values of n and k. Fortunately,

32 CHAPTER 3. THE ENUMERATION OF MOLS

because any row-reduced MOLS which passes the first search criterion must have the identity

as u((JO) and a cycle structure representative as uél), only a small subset of these transformations

actually have to be considered.

When determining whether a partial &-MOLS M of order n is in the same main class as some
lexicographically smaller paratopic partial k-MOLS M’ of order n, it is clear that v(()o) e UM
must also be the identity permutation. Similarly, if the conjugate operation is restricted to

transposes and the reordering of squares, then v(()l) € U(M’) must be the same cycle structure

representative as u((]l) € U(M). From the fact that v(()o) is the identity permutation, it may be
deduced that the same permutation, say p, is to be applied to the rows and columns of M.
In order to preserve the cycle structure of v(()l), the permutation p must have the same cycle

(1)

structure as uy’. More specifically, the relevant operations are those which map the cycles

of u(()l), and all their rotations and reorderings, to the cycle structure representative u(()l). If

1) . n <D .m. .
(()) is 21252 ... zp", for example, then [[;=} i"n;! operations need to be

considered in total. All (py., 7['[()1), ... ,Wékil), €)-transformations, where p is one of the operations
described above, 7 is any permutation of order n and € is the conjugate which either transposes
the Latin squares of M or reorders them, are therefore investigated to ascertain whether they

result in a lexicographically smaller row-reduced k-MOLS.

the cycle structure of u,

If no such lexicographically smaller paratopic MOLS is found, then M may not be pruned away
from the search tree. The algorithm continues by generating a list of candidate universals to
insert into the next Latin square in M and attempts, in turn, to insert each of the universals
into M while repeatedly testing whether the resulting partial MOLS may be pruned away from
the search tree. Whenever all the universals in the candidate list have been considered, the
search backtracks by moving one level up in the search tree, removing the previous universal
and considering its remaining alternatives. Whenever a completed k-MOLS of order n is found,
it is compared to the relevant paratopes of its (k+2)! conjugates (recall that, for transformations
on partial MOLS, only two of the conjugates are allowable) to test whether it is a main class
representative.

(1)

Theorem 3.2 stresses the importance of the universal uy,’ € U(M) in classifying portions of
the enumeration search tree with specific properties. Specifically, two partial k&-MOLS are in
the same section of the enumeration search tree if their respective ugl) universals are the same
cycle structure representative. A psuedo-code description of the enumeration process is given
in Algorithm 3.2 and the process is exemplified by the enumeration of 2-MOLS of order 5 in
Figure 3.3 [8, 53].

According to Theorem 3.2, u(()o) must be the identity permutation and u((]l) a cycle structure

representative, of which there are two possibilities for order 5, namely zlzg and 2124 (recall that
there must be exactly one fixed point to ensure orthogonality with the identity permutation).
Where branches become inactive it is indicated in Figure 3.3 that either (a) no candidate uni-
versals preserve orthogonality, (b) a lexicographically smaller partial MOLS has been found in
the same main class, or (c) a class representative had indeed been discovered. The enumeration
search tree consists of two sections and a completed 2-MOLS of order 5 is found in both these
sections. However, the one in the second section may be shown to be in the same main class as,
and lexicographically larger than, the one in the first section.

Algorithmic implementations should, of course, be tested for accuracy, but this is rarely a simple
task. For any given test case, a number of blocks of code, or combinations thereof, may never
be visited, often raising doubts about the overall correctness of the algorithms. This problem
is largely avoided here due to the fact that the numbers of branches on every level of the

33

3.3. The enumeration methodology adopted in this thesis

o] 1
1[0 T
(®) 0
| [0
1|0
1] Jo o] [t
oo 1| [T]o
‘@[Jo]T - o [1
- (1 o 1| [o 0
1[0 10
0
Clv|Li0fel 10]T]elY]C T ¢] [o]r]e] [<] J1]o oft1 T 1]0 0 |
ojrjeiriel [€]0|¥[CT]! 0[1 ¢| [e]o] [zt 0[1 [4 o [e]1 o[t 0]

@ejo|vicji—Ilc|oleivE —— J¢]0 THi[efole] F -:- 4 [of JeJiH{1]z]o F-—- o [|
Ljcjojejv| |c|v[rjoje . 1[c ¢ [1]o]¢ 1[c|o ¢ J1fo 1| |0 !
vlele|tjo] [riejcft]o] € 0 ele]1]o c[1]o c[1]o Ho/om T __

” o C T 0 Lo \
: Z]o 1 o] [1 \ o \
. T Jole[F-—-- o T \
: Z]1]o 10 1[0

vz 1z uo1109g . 1o o (HD

£z 1z uor0ag : 01 | : 0
0]1 I 0

() 0] |1 !

1 0 !

[0 !

1

TJo]elc[r] [0]c[1[¥][¢ 10 o[[¢ T[o] [c 0[]t][0 o] [t _‘

olc[t[r]e] [t[o]c]c]¥ K e [t]o]¢]z olz]T 1[o] |z ol |1 10)

@ [E[1[r[o[cHHe[r[o]E]T} - - [T e JoleltF -— 4 [T] [oletHe] [o] [tf -~ [t [o] HH o] [1 I
cvlolelt] [g]1]r]o]z T 1| [e]1] [o]c | [o] [1 1| [o]z ol [T 1 o 0 !
vlele[1]o] [r[E]c]1]0 € 0 €le]1]o Z]1]o z[1]o 10 10 U

0
0[1 0
01 0
@ [T] Jo
0]1
1]0
1[o] [¢ o[zt 170 o [t
©Jole]n 1o [T o] [T 1[0
(@ [z o[t T]o] [ef - A o[TH [1]o
: o] [¢]| [z 01 1[0 0[1
Z[1]o Z[1]o 10 10
T PATPY g ATV G PATY G RAIPY G PATPY € PAIPY 7 RAIPDY § 9AIPDY C PATPY T ATV
G ‘S9PON ¢ ‘SOPON G ‘S9PON ¢ ‘SOPON ¢ ‘SOPON ¥ ‘SepPON G ‘SOPON N ‘SOPON ¢ ‘SOPON T ‘SO9PON
AT Q7 [9A9] CeAT (0°¢ [PAdT] CTeAT (0T [PA9T] T [eAT QT [9A9T] 0 PAT 070 [9A97]

{ J0J S[esIoATU()

€ 10J S[eSIoAIUN)

T 10J S[esIoATIU()

] J0J S[esIoATu()

(10J S[esIoATU()

FIGURE 3.3: The backtracking enumeration search tree for 2-MOLS of order 5. At every leaf it is either
indicated that (a) no candidate universals preserve orthogonality, or that (b) a lexicographically smaller

partial MOLS has been found in the same main class, or that (c) a class representative has been found.

34 CHAPTER 3. THE ENUMERATION OF MOLS

Algorithm 3.2: enumerateMOLS(P) [8]
input : A partial k-MOLS P
output: All completed class representatives in the subtree of the enumeration search tree

rooted at P

1 begin

2 if P is complete then

3 if none of the conjugates of P has smaller isotopes then
4 output P as class representative

5 return

6 else

7 L return

8 for every candidate universal ¢ do

9 if ¢ preserves orthogonality and P U ¢ is valid by Theorem 3.2(c) then
10 if P U ¢ has no smaller isotope k-MOLS then
11 L enumerateMOLS(P U ¢)
12 end

enumeration search trees for main classes of k-MOLS of order n have already been enumerated
and published by Kidd [53] for all n < 8 and all 2 < k < n. The current implementation
of Algorithm 3.1 was validated by comparing the active branches on every level of the search
tree for main classes of k-MOLS of order n (for the above-mentioned values for n and k) to
those in the literature under the assumption that any significant error in the implementation of
Algorithm 3.1 would lead to an invalid traversal of the search tree and an incorrect count.

The number of active nodes encountered on every level of the search trees for main classes of
3-MOLS of order n < 8 may be seen in Table 3.3 and the values are identical to those found
by Kidd [53, Table 5.21]. A more complete summary of the enumeration results for 3-MOLS
of order 8, which groups the nodes according to sections of the search tree, may be found in
Table 3.4.

The most important aspect of the implementation, apart from its correctness which has already
been established, is perhaps its efficiency, or the time that an enumeration takes. The com-
putation time required to fully enumerate the main classes of k-MOLS of order n is directly
related to the sizes of the corresponding search trees. The enumeration times required for main

TABLE 3.3: The number of active branches on every level of the enumeration search tree for main classes
of 3-MOLS of order n < 8 produced by Algorithm 3.1.

Nodes on level

n 0 1 2 3 4 S 6 7
3 1 1 1

4 1 1 1 1

5 2 4 2 2 1

6 3 20 0 0 0 0

7 14 10529 3800 3 3 3 1

8 45 15948763 1546241258 18877734 216 168 159 39

3.3. The enumeration methodology adopted in this thesis 35

TABLE 3.4: The number of active nodes in every section and on every level of the enumeration search
tree for main classes of 3-MOLS of order 8 produced by Algorithm 3.1, together with the total time that
the enumeration of that section required on an Intel i5 processor with 8Gb of RAM.

Level
Section 0 1 2 3 4 5 6 7 Time (s)
212523 17 12501028 1484518094 18814494 55 23 22 20 775321
212425 14 3358273 61 708 802 63157 97 92 84 17 60011
212374) 52059 5283 1 0 0 0 0 93
2127 9 37403 9079 82 64 53 53 2 112

Total 45 15948763 1546241258 318877734 216 168 159 39 835537

classes of k-MOLS of orders 7 and 8 may be compared to those of Kidd [53, p.111-115], as
provided in Table 3.5. It is clear that the current implementation was significantly faster than
the implementation of Kidd [53], but this may simply be the result of using different hardware
Systems.

If the effect of the hardware is assumed to remain constant, it may be removed by normalising
the data. In this case the computation times are normalised by dividing the computation time
required to enumerate the main classes of k-MOLS of order n by the computation time required
for, say, the enumeration of main classes of 3-MOLS of order n. The normalised computation
times for enumerating these main classes for orders 7 and 8 may be found in Table 3.6.

In both implementations the enumeration of main classes took the longest for k = 2 and k = 3.
It is noticeable that the current implementation of Algorithm 3.1 performs significantly better

TABLE 3.5: A comparison of the computation times (in seconds) required to enumerate main classes of
k-MOLS of orders 7 and 8 to those achieved by Kidd [53].

k
n 2 3 4 5 6 7
ciad T 14 12 4 5 392
8 3255981 3141695 393412 88815 8481 20394
Current implementation 7 10 6 2 1 1
e PICIEmLation ¢ 309791 835537 123538 18199 343 113

TABLE 3.6: A comparison of the normalised computation times required to enumerate main classes of
k-MOLS of orders 7 and 8, expressed as a fraction of the computation time required for 2-MOLS of order
n, to those achieved by Kidd [53].

2
n 2 3 4 5 6 7
. 7 116 1 0.33 0.42 2.67
Kidd ¢ 103 1 012 003 3x10°® 6x10°3
Current implementation 7 167 1 033 017 0.17
p 8 037 1 015 002 4x10% 1x10°4

36 CHAPTER 3. THE ENUMERATION OF MOLS

for 2-MOLS of order 8 and in general for large values of k. Although the enumerations of main
classes for larger values of k are relatively easy for k-MOLS of order 8 this seems to suggest
that, if a higher-order enumeration is to be performed, the implementation may perhaps be most
profitably used to pursue the enumeration of main classes of the 7-MOLS or 8-MOLS of order
9.

A technique for estimating the sizes and characteristics of higher-order enumeration search trees
in the case where it is impractical to visit all, or even a significant portion of, the nodes in the
search tree beforehand is suggested in the next section.

3.4 On the enumerability of larger-order search spaces

Consider a rooted search tree T" with £ levels in which the root is the only node on level 0 and
the number of nodes on level i is denoted by n; for all ¢ = 0,1,...,¢ — 1. It is clear that in the
special case of a complete k-ary tree*, the number of nodes on level i is k* and the total number
of nodes in T', denoted n(T), is simply the sum of the nodes on every level, over all levels. In the
slightly more general case where every node on level ¢ has ~; children, it holds that n;11 = n;-;
and that the total number of nodes in 7' is

—1 i
n(T) =1+ +70n +rmr+-- =1+ > [[
i—0 j=0

In 1975, Knuth [54] proposed a technique for estimating n(7") by approximating the average
number ~y; of children of a node of the tree T" on level 7, by a value «;, based on the average
findings of a number of trial traversals of random paths downwards in the search tree. Such a
downwards traversal, which may be likened to a random “dive” down into the search tree, starts
at the root and finds a path by randomly selecting the next node from the children of the current
node according to a uniform distribution. The path ends at a node with no children. Knuth also
considered selecting the successor of a node with non-uniform probability and showed that the
expected value of both techniques is n(7'), the actual total number of nodes in the backtracking
tree. The tree in Figure 3.4, for example, has a total of 25 nodes and 7 = [4,2,1.5,0]. If the
four random paths culminating in the nodes labelled P;, P>, P3 and P, in Figure 3.4 are used to
approximate n(7T), it is estimated that v* = [4,2.33,2.5,0] and that there are approximately 37
nodes in the enumeration search tree — an overestimation. By selecting the four different paths
Ps3, Py, P5, Pg, however, the number of nodes in the search tree is underestimated at 17.

Knuth expected this approach to lead to underestimates in cases where the lower levels of the
search tree are only visited with a very low probability, in other words, when the majority of the
potential paths from the root do not reach the lower levels of the tree. In the specific context
of the enumeration search trees encountered in this thesis, however, this underestimate is not
likely to be significant as only a very small proportion of the nodes reside in the lower levels of
the enumeration search tree. The number of nodes on the respective levels of the search tree for
main classes of 3-MOLS of order 8 in Table 3.4 provides an example of this phenomenon. Knuth
also noted that this estimation method is likely to yield estimates with a very high variance,
especially in cases where a relatively small number of these dives are averaged. Some evidence
of this expectation was seen in the example above. Purdom [79] refined Knuth’s algorithm and
attempted to decrease this variance by investigating more than one child of every node along
the path. It is, however, clear that there is a delicate balance between visiting enough nodes

4Every node in a k-ary tree, except for the leaves, has exactly k children.

3.4. On the enumerability of larger-order search spaces 37

P P P

FIGURE 3.4: The four random paths ending in the nodes labelled Py, P>, P3 and P, may be used to
estimate the number of nodes in the tree as 25. An alternative estimate may be calculated by using
any subset of paths from the root, such as the set of paths ending at P3, Py, Ps and Pg, which yields an
estimate of 17 nodes. The tree actually contains 25 nodes.

of the search tree to decrease the variance of the estimator sufficiently, and visiting few enough
nodes so that the estimate remains computationally relatively inexpensive.

Two adaptations are proposed to tailor these classical estimators to estimating the sizes of the
backtracking search trees produced by Algorithm 3.1.

In the first adaptation proposed, the pruning of candidate universals which takes place in Al-
gorithm 3.1 is decomposed into two stages: during the first stage pruning takes place based
whether a candidate universal preserves orthogonality and is valid by Theorem 3.2 (Step 9 of
Algorithm 3.1), while during the second stage universals inserted into partial MOLS are pruned
away if the resulting partial MOLS have lexicographically smaller isotopes (Step 10 of Algo-
rithm 3.1). It is expected that these two steps of the algorithm, when considered individually,
may exhibit properties of the enumeration search trees that assist in obtaining accurate esti-
mates of their sizes. For convenience, these two tests that candidate universals must pass in
order to be feasible are referred to as isOrthogonal and isSmallest in the remainder of this
discussion.

It was found that that the average number of candidate universals which pass the isOrthogonal
test depends sensitively on the cycle structure of u(()l), but remains largely constant within a
given section of the tree. Evidence of this phenomenon may be seen for the 45 active nodes on
level 0 of the enumeration search tree for 3-MOLS of order 8 in Figure 3.5 for the two sets of
universals ugj) and ugj) with j € Zy. Notice in the figure, that the average number of children of
nodes in the same section is very similar in the absence of the isSmallest test. Furthermore,
the average number of candidate universals which pass the isOrthogonal test decreases with
every additional universal inserted into the partial MOLS as it becomes progressively harder to
preserve orthogonality. This regularity in the number of children of a node of the search tree,
as well as its sensitive dependence on the cycle structure of ugo) was also observed in the search
trees for 3-MOLS of orders 7, 9 and 10.

These properties make it possible to estimate ; in any given section accurately by only examining
a very small random selection of partial MOLS that are in the same section of the tree on level
i, since the average of this sample is highly likely to be close to the actual value of +; for that
section. In order to further improve the estimate, and to exploit the fact that the variance in the
respective estimates 7" is likely to be small, the notion of polling some of the children of a partial

38 CHAPTER 3. THE ENUMERATION OF MOLS

T L TT | — T T T T E— L
s : ' [aun(0) : '~ [aus(0)
| | | A
g B00| | e Cbwm() || g g) e (1) |
— | | | — | | |
< I | | <
n +uq(2 0 ‘ : ! +uo(2
‘e sty @ g | el
> >
Z 20| | : R - el |
= | | Col = | | L
) I I I I I <5} | I I I I
— A —
% 1 00 | ixxxxxxxxxxxXxxxXx: %AA‘AE R Ai B "% 5| :Xxxxxxxxxxxxxxxxg : : : |
‘A‘ | | | | |
g | PO, 35X A AL g I ‘P?(xxXXxXxXxxwé ““A A
I I I I I I " A"
T | et debnt || et
o0 OOOK
O L i | : | | W++PHJ‘ i O L i | : | | ‘ ‘ | : i
0 10 20 30 40 0 10 20 30 40
Starting problem Starting problem

FIGURE 3.5: The average number of feasible candidate universals u;(j) found for i = 1,2 and j € Zj,
in the enumeration of main classes of 3-MOLS of order 8 for each of the 45 partial 3-MOLS which pass
the isSmallest test on level 0 of the search tree. The dashed lines indicate in which section the starting
position resides, i.e. whether the permutation ug(1) in the initial partial 3-MOLS has the cycle structure
212323, 212925, 212324 OF z127, in that order.

MOLS is proposed. In addition to letting the number of children of a node which are visited
be a function of the total number of children of that node, a number of children are also polled,
in other words, they are probed to ascertain the number of children that they themselves have.
Although these polled nodes are not fully visited in the sense that none of their children are
visited, they affect the estimation v as though they were, in fact, visited. This approach seems
to be a sensible compromise between managing the increase in accuracy and the decrease in
variance expected when applying Purdom’s algorithm and the much shorter enumeration times
which may be expected if fewer nodes of the search tree are visited, as in Knuth’s version of
the algorithm. It is believed that this polling process will provide much of the same benefit as
visiting multiple branches of the search at every stage of the dive without drastically affecting
the computation time, since the total number of nodes visited remains largely the same.

The estimated numbers of nodes on levels 1, 2 and 3 of the enumeration search trees for main
classes of 3-MOLS of orders 8, 9 and 10 may be seen in Table 3.7. These estimates have proved
to be fairly accurate for order 8. Notice that the actual number of nodes on level 1 of the
search tree for main classes of 3-MOLS of order 8, for example, differs from the number given in
Table 3.4. This is because the nodes in Table 3.7 were counted in the absence of the isSmallest
test.

TABLE 3.7: A comparison of the actual and estimated total numbers of nodes on levels 0,1,2 and 3 of
the enumeration search trees for main classes of 3-MOLS of order 8 in the absence of the isSmallest
test, together with similar estimates for orders 9 and 10.

Order 8 Order 9 Order 10
Actual Estimated Estimated Estimated

Level 1 2.61 x 107 2.60 x 107 5.79 x 1010 2.41 x 104
Level 2 4.34 x 10° 3.74 x 10 3.39 x 105 9.67 x 102!
Level 3 9.96 x 105 9.31 x 108 2.15 x 106

In order to find estimates for the total numbers of nodes on these levels of the respective

3.4. On the enumerability of larger-order search spaces 39

search trees, it remains to apply the pruning effect of the isSmallest test. Unfortunately, the

isSmallest test does not readily exhibit the same regularity as the isOrthogonal test in terms

of the number of candidate universals that pass the test. In order to estimate the number of ac-

tive nodes on levels 1 and 2 of the enumeration search trees, the pruning effect of the isSmallest

test must be applied to these estimated total numbers of nodes on all levels of the trees.

Let p; denote the percentage of partial 3-MOLS which pass

the isSmallest test on level i after having passed the TABLE 3.8: The average pro-

isOrthogonal test. The values of p; and ps for orders 6,7 portions of nodes which pass the

and 8 may be seen in Table 3.8. Notice that approximately isSmallest test on levels 1 and

50% of the nodes on levels 1 and 2 pass the isSmallest test. 2 during the enumeration of main
. . . classes of 3-MOLS of orders 6, 7 and

Based on this evidence, the numbers of active nodes on levels 3

1 and 2 of the enumeration search trees for orders 9 and 10

were estimated for three values of p = p; = po, specifically

p = 0.5, together with expected over and under estimate val-

ues of p = 0.4 and p = 0.6, respectively. Note that this Level 1 0.55 0.483 0.573

pruning propagates downwards through the tree. The total — Level 2 0 0538 0.511

numbers of estimated nodes on levels 1, 2 and 3 of the search

trees for main classes of 3-MOLS of orders 8,9 and 10 for

p = 0.5 may be seen in Table 3.9, the numbers for different values of p are calculated similarly.

n 6 7 8

TABLE 3.9: The estimated total number of active nodes on different levels of the enumeration search
trees for main classes of 3-MOLS of orders 9 and 10, as well as the estimated time that the enumeration
would take.

Order 8 Order 9 Order 10
P Actual 0.5 0.5
Level 1 15948 763 2.89 x 1010 1.21 x 1014
Level 2 1546241258 8.48 x 10'% 2.42 x 10%!
Level 3 18877734 2.68 x 10%° —
GHz-days 32 5.64 x 108 1.42 x 10'®

Note that, once the number of nodes on any level of the search tree is known (or has been
estimated), the time required for the enumeration may be estimated by randomly selecting
a representative sample of the nodes on that level, traversing their subtrees and calculating
the time required for the traversals of all the subtrees rooted on that level. To enable a later
comparison between computing systems of different speeds, the estimated time to completion
is expressed in GHz-days — the number of days that a single 1Ghz processor would take to
complete the computations. It is expected that a complete enumeration of 3-MOLS of order
9 would take approximately 5.64 x 10® GHz-days, while for order 10 this is expected to take
approximately 1.42 x 10'® GHz-days (these estimates may also be found in Table 3.9).

It is already known that certain sections of the search tree are significantly denser and require
more computations to traverse than others (see, for example, Table 3.4). In addition to knowl-
edge about the size of an enumeration search tree, knowledge about the shape and characteristics
of the tree may lead to a more effective approach. The way in which the shape of the enumer-
ation search trees change for different values of k may also provide further insight into the way
that the number of Latin squares in the MOLS and the number of universals already inserted
into the partial MOLS influence the pruning process.

40 CHAPTER 3. THE ENUMERATION OF MOLS

The numbers of nodes on level 0 of the enumeration search trees for main classes of k-MOLS of
orders n were computed for n < 10, £ < n and appear in Table 3.10. The way in which these
nodes are distributed over the different sections of the enumeration trees for main classes of
order 9 may be seen in Table 3.11. The numbers of nodes on level 0 of the corresponding trees
for main classes of 5,6,7,8 and 9-MOLS of order 10 could not be determined after 3 months of
continuous computation.

As may be seen in Table 3.11, the number of nodes per section of the search tree increases
gradually before reaching a peak and then dropping down to zero. This may be explained
by considering the interplay between pruning away partially completed k-MOLS because no
candidate universal is orthogonal to the current partial k-MOLS, and pruning them away because
a partially completed k-MOLS may no longer be completed to be a class representative. In the
lexicographically smaller sections of the search tree there are very few potential lexicographically
smaller isotopes while in the later, lexicographically larger sections there are many permutations
that may potentially lead to lexicographically smaller isotopes.

This peak shifts towards earlier sections of the tree for larger values of k, in other words,
enumeration search trees for large values of k are relatively broader in the first few levels of the
tree. This is because the orthogonality constraint becomes restrictive much more quickly when
there are many Latin squares to consider. This broader top for large values of £ may also explain
the apparent contradiction between the fact that the number of nodes on level 0 increases with

TABLE 3.10: The numbers of nodes on level 0 of the enumeration search trees for main classes of k-MOLS
of order n € {3,4,...,10}.

k
n 2 3 4) 6 7 8 9
3 1
4 1 1
5 2 2 2
6 2 3 3 2
7T 2 14 44 33 17
8 4 45 808 3712 1895 324
9 7 259 48285 2379263 14610901 6670346 842227
10 8 1700 796067067 — — — — —

TABLE 3.11: The distribution of nodes on level 0 over the different sections of the enumeration search
tree for main classes of k-MOLS of order 9.

k
Section 2 3 4 5 6 7 8
21 zé 1 20 2458 166 245 1479282 926486 152090
z12324 1 53 18502 1268778 9401217 4727973 617476
21 zzz?% 1 39 10444 508454 2493403 776991 59 447
212976 1 77 14038 413831 1222225 238 243 12206
21723725 1 47 2600 21630 14710 647 7
21 zz 1 23 253 325 63 6 0
z2128 1 0 0 0 0 0 0
9 7 259 48285 2379263 14610901 6670346 842227

3.5. Chapter summary 41

k up to a certain peak, after which it decreases, while the enumeration times strictly decrease as
k increases. For larger values of k the search trees are shallower and can therefore be traversed
faster because of the increased restrictiveness of the orthogonality test.

Based on the shape and characteristics of the enumeration search trees considered here, the
enumeration of main classes of k-MOLS of order n is likely to be quickest for large values of k,
since the search tree is very broad initially, but shallower overall.

3.5 Chapter summary

The focus of this chapter was on the problem of enumerating equivalence classes of Latin squares
and MOLS. In §3.1, various transformations were presented that partition the set of all Latin
squares into equivalence classes. The notion of a paratopism which, in turn, gives rise to the
notion of main classes of Latin squares, was of particular interest and was extended to sets of k
mutually orthogonal Latin squares. The theoretical and algorithmic developments with respect
to enumerating these equivalence classes since Fuler first considered the problem in 1782 were
described in §3.2.

A backtracking algorithm for the enumeration of main classes of MOLS, which may be seen as
a variation on Sade’s algorithm for counting reduced Latin squares, was presented in §3.3. The
algorithm constructs all the main class representatives and was used successfully to enumerate
main classes of k-MOLS of order n for n < 8 and k£ < n. The algorithm has, however, proven to
be too computationally expensive for k-MOLS of larger orders. Techniques for estimating the
sizes of the enumeration search trees for main classes of MOLS of orders n > 8 were considered
in §3.4 in order to gain some insight into the likely computation time required for these larger
enumeration attempts, which include the 3-MOLS of order 10. It was also shown that as the
value of k increases the enumeration search tree becomes both broader at the top and shallower,
making these enumerations potentially easier.

In the next chapter, a computing paradigm is introduced which may provide a way of overcoming
the computational barrier which has, up to now, prohibited the enumeration of main classes of
k-MOLS of orders n > 8.

42

CHAPTER 3. THE ENUMERATION OF MOLS

CHAPTER 4

Volunteer computing

Contents
4.1 A historical overview of public-resource computing 43
4.2 The Berkeley Open Infrastructure for Network Computing 46
4.2.1 Basic workflow and concepts of volunteer computing 46
4.2.2 Grid-enabling a simple BOINC project 47
4.2.3 Special types of applications 52
4.2.4 Setting up a server and project maintenance 53
4.2.5 Security CONCEINS o v v it e i 54
4.2.6 Challenges facing volunteer computing 54
4.3 Chapter sSUmMmary o v e e e 55

The basic concepts of distributed and volunteer computing are reviewed in this chapter. A brief
historical overview of some popular distributed and volunteer projects is provided in §4.1. Berke-
ley Open Infrastructure for Network Computing (BOINC), in particular, is examined in some
detail in §4.2, starting with basic concepts and the steps required to create a volunteer computing
project using this predominant middleware system. Some consideration is also given to special
types of applications and the requirements of setting up a BOINC server, as well as common
security concerns and challenges facing distributed and volunteer project administrators.

4.1 A historical overview of public-resource computing

In John Brunner’s 1975 science-fiction novel, The Shockwave Rider [18], the main character cre-
ates a “tapeworm” program which is able to propagate itself through a network of computers,
replicating when needed and consuming resources wherever available. This type of program,
capable of harnessing resources on any number of machines, piqued the interest of a group of
researchers at Xerox’s Palo Alto Research Center (famously the home of the first graphical user
interface) which set about creating a number of “worms” for controlling multi-machine perfor-
mance measurements of their pioneering first Ethernet network [88]. Distributed computing
systems were mainly confined to networks within organisations or academic departments for the
following two decades. An early example of such a distributed computing system is HT'Condor
[93, 91]. This system was developed in 1988, was originally known as Condor, and is still active

43

44 CHAPTER 4. VOLUNTEER COMPUTING

today. The recent widespread public adoption of personal computers and the internet has, how-
ever, made it possible to involve the public in distributed computing, also known as volunteer
computing.

Anderson et al. [92] define volunteer computing as a form of computing where both organizations
and members of the public can donate unused computing resources to computing projects, which
are usually applications of a scientific or academic nature. Volunteer computing is built largely
on trust and mutual goodwill as it is necessary that the volunteers trust the projects not to
perform unapproved calculations using their resources and to guard their personal account details
carefully. Similarly, although IP and email addresses may be linked to individual volunteers,
volunteers remain largely anonymous and no disciplinary steps are typically available to curb
volunteers who wilfully corrupt computations. For project administrators the main advantages
of volunteer computing are, firstly, that it provides access to at least part of the approximately
ten billion devices linked to the internet [4, 34] and, secondly, that it raises public awareness of
scientific endeavours and provides a mechanism through which a project of large popular appeal,
but little funding, may flourish [92]. Volunteers, on the other hand, are able to contribute to
scientific projects which interest them and are rewarded in credits, which become somewhat of
a status symbol.

Volunteer computing is somewhat similar to two other forms of distributed computing, namely
grid computing and peer-to-peer networks. Grid computing is generally considered a paradigm
through which computing resources are shared within and between organizations in a mutually
beneficial way. An example of such a system is a desktop grid consisting of all the desktop
computers within an organization. Grid computing has many aspects in common with volunteer
computing, but differs from it in that the “volunteers” are usually more reliable because of a lack
of anonymity and the accompanying existence of disciplinary measures [40, 92]. The principles
of peer-to-peer computing, on the other hand, are perhaps best seen in file-sharing services such
as Napster [68] or BitTorrent [9] — data transfer takes place between computers without any
form of coordination by central servers [75, 87]. Volunteer computing, on the other hand, relies
on central servers hosting projects and it is not possible for two clients to communicate directly
in such a computing paradigm without coordination by the central servers.

There are, however, many challenges associated with publicly distributed computing. For ex-
ample, the platforms on which applications must be able to execute accurately have become
rather more heterogeneous and a distributed computing network is likely to be much more un-
reliable than a computer network within a corporation or laboratory. Despite these limitations,
scientists have become increasingly interested in unlocking the massive computing power which
lies dormant in the idle computer cycles of the public. Two early volunteer computing projects,
the Great Internet Mersenne Prime Search (GIMPS), which searches for very large Mersenne
primes [63], and distributed.net [30], which facilitates brute-force decryption, were established
in 1996 and 1997, respectively.

GIMPS is still active today and currently runs on more than 730000 CPUs around the world,
with an average annual throughput close to 130 TeraFLOPs! [63]. Mersenne primes are primes
of the form 2™ — 1 and account for most of the very large prime numbers known today. The
first Mersenne prime discovered by GIMPS, namely 21398269 _ 1 was found in November 1996
[47], while the forty-eighth Mersenne prime, and the currently largest known prime number,
namely 257885161 _ 1 was found on 25 January 2013 [63]. The network distributed.net also
remains active and concerns itself with finding optimal Golomb rulers (combinatorial curiosities
with application to the placement of radio antennas in astronomy) and deciphering encoded

1One TeraFLOPS of computing power is equivalent to 102 floating point operations per second, or approxi-
mately 500 GHz-days.

4.1. A historical overview of public-resource computing 45

messages [30], a trend which, according to Hayes [47], started when the company RSA Data
Security issued a number of challenges in 1997, hoping to test how easily their encryption systems
were breakable and to demonstrate the inefficiencies of rival schemes. Notable early successes
were the breaking of RSA-129, which involved the factorisation of a 129-digit number and
took 600 volunteers eight months to perform, and the decryption of a message encrypted using
the Data Encryption Standard (DES), which was developed under US government sponsorship
during the 1970s [30]. Another early project, which has grown into one of the most influential
volunteer computing projects, is SETI@Home (an abbreviation for Search for Extraterrestrial
Intelligence), launched in 1999 by a group of scientists from the University of California at
Berkeley to examine radio waves detected by a telescope operated by Cornell University and the
National Science Foundation in Arecibo, Puerto Rico [6]. The project was very well received
by the public and attracted millions of volunteers. By 2004 the average sustained processing
power of the SETIQHome project was more than 70 TeraFLOPs — more than double the
35 TeraFLOPs of the most powerful supercomputer at that stage, the NEC Earth Simulator [3].

According to Anderson et al. [6], the encouraging success of these early projects led to wider
support for frameworks which could be used for public-resource or large-scale distributed com-
puting. In 1999, the Global Grid Forum was formed as an umbrella corporation for a number of
distributed projects, collectively called The Grid [40]. The mandate of this corporation was to
coordinate resource sharing amongst research organizations, while many private organizations,
such as Platform Computing and United Devices, were developing corporate systems for dis-
tributed storage and computing. A number of middleware systems were launched to facilitate
distributed computing grids. Examples of such systems include Sun Grid Engine in 2001 [74]
(now called the Oracle Grid Engine), Advanced Resource Connector in 2002 [69] and the Globus
toolkit in 2004 [25]. BOINC was also launched in 2004 [3], spearheaded by David Anderson,
who was the Chief Science Officer at United Devices at the time and also co-founder of the
SETI@QHome volunteer computing project.

More than 80% of the currently active public-resource computing projects make use of BOINC
and, as such, it is the focus in the remainder of this chapter as an example of a middleware
framework for distributed computing. BOINC, as well as other middleware, provides simple
interfaces for both volunteers and scientists, and handles the required network connections auto-
matically, thereby considerably decreasing the difficulty of establishing a new volunteer project.
It also provides scientists with a comprehensive Application Programming Interface (API) with
which to interact with volunteers and to enable volunteers to use the same client to connect
to multiple volunteer computing projects. The first project to make use of BOINC was, un-
surprisingly, SETI@Home. A large number of scientific projects followed suit with applications
ranging from testing Einstein’s theory of general relativity (Finstein@Home) [1] and finding new
arrangements into which proteins may fold themselves (Folding@Home) [77] to the distributed
rendering of animated films (BURP) [82]. A number of large organizations are also engaged
in volunteer computing through BOINC, such as IBM through their World Community Grid
(WCQG) initiative which serves the community by computing vaccines for malaria and modelling
the earth’s fresh-water supply [49], CERN, which uses the LHC@Home project to process vast
quantities of data obtained from experiments in their Large Hadron Collider [22], and Oxford
University, which runs a number of different models estimating the effects of climate change on
Climateprediction.net [23].

BOINC remains under active development by a group of software developers and project ad-
ministrators. A BOINC client for Google’s open-source mobile operating system Android has
recently been released, thereby enabling the approximately 470 million Android smartphones in
the market [67], many of which have two, four or even eight processors, to take part in volunteer

46 CHAPTER 4. VOLUNTEER COMPUTING

computing [60].

4.2 The Berkeley Open Infrastructure for Network Computing

The main aim of BOINC is to simplify setting up a large-scale volunteer computing project,
to minimize the time required for administrating the day-to-day running of the project and to
enable a single computer, after a few weeks of work, to perform the role of a server for a project
involving thousands of volunteers. Reducing the entry cost to volunteer computing has enabled
many scientists with widely varying backgrounds and only moderate programming skills to take
advantage of public resources for their computing endeavours — something which would not have
been possible had it been necessary for them to design the entire system themselves. According
to Anderson [3], secondary design goals included support for a diverse set of applications and
programming languages, allowing for the sharing of resources between autonomous projects by
letting volunteers simultaneously take part in a number of projects by assigning a priority to
each project and, finally, rewarding the volunteers in some way by measuring their contributed
resources.

As enticing as the advantages of public resource computing and BOINC, in particular, may
seem, it is important to note that not all applications work equally well within this model.
For a project to be successful in utilizing public resources, especially in the developing world
where high-speed internet is still a rarity, it is firstly very important that the application should
have a large computation to data ratio (so that small data transfers to volunteers can lead to
multiple hours of computations) and, secondly, that the execution of the application should be
independently parallelisable. Some classes of applications which seem particularly well suited to
this type of distribution are described in [5]. An example of such an application is the simulation
of physical systems in which every simulation is independent of the others or a physical model
in which complex parameter spaces which must be explored. Random and genetic algorithms
may also benefit from volunteer computing, as every independent trail can be performed by a
different volunteer in the case of random algorithms, while for genetic algorithms every volunteer
may receive an initial population of solutions to evolve from independently. A final category
of projects, which has perhaps proven most successful in practice, involves the analysis of large
amounts of data, such as from radio telescopes (as in the case of SETIQHome) or from the Large
Hadron Collider (as in the case of LHC@QHome) [5].

4.2.1 Basic workflow and concepts of volunteer computing

According to [92], a BOINC project is a self-contained entity consisting of a database, website,
applications, work units and results.

An application consists of a number of different executable programs, usually one for every
platform on which the project is available. Standard platforms are pre-defined in BOINC and are
combinations of CPU architectures and operating systems (e.g. a 32-bit Intel processor running
Windows or a 64-bit Intel processor running Linux). Knowing on which platform a computation
is performed is important for ensuring correct results, as different platforms handle floating-point
operations in different ways and this may lead to discrepancies in results if ignored.

A work unit is a computation task that has to be performed. It is associated with a specific
application and has various attributes, including the names of its input files, the estimated
execution time, and the resources required to complete it. As was mentioned in §4.1, the results
returned by volunteers may not necessarily be trustworthy. Volunteer computing projects usually

4.2. The Berkeley Open Infrastructure for Network Computing 47

mitigate this risk through redundant computing, which means that every work unit is computed
multiple times by different volunteers and the results are compared for correctness. A result
may therefore be seen as a copy of a work unit which is sent to a volunteer for computation.
Once a certain number, called a quorum, of results of a specific work unit have been returned,
they are compared to find the definitive or canonical result for that work unit.

All work units and results are stored in a database on the server, along with additional informa-
tion related to applications, work units, volunteers and hosts. A distinction is made between a
volunteer, who creates an account with an email address and password when joining a project,
and a host, which is the actual machine performing the computation. A single account may thus
have a number of hosts associated with it, each running a version of the BOINC client which
allows the host to attach to scientific projects. Some measure of credit is associated with an
account, so that all hosts running under the same account earn credit in the same place.

Once a volunteer host has connected to a specific project through the client it may request
work from the project’s servers. A so-called deamon (a small, periodically executed task-specific
program) running on the server, called the scheduler, takes the host’s resources into account
and dispatches suitable results, if any are available, after which the computation takes place on
the host. Once the computation has been completed the client on the host reports the results
to the server along with a request for further work. The results thus received are stored on the
server until their respective quorums are met, after which the results are tested for correctness, a
process called validation, credit is assigned to correct results and the results are finally processed
or assimilated. In the meantime, the host would have received new results for processing and the
process, as illustrated in Figure 4.1, may be repeated as long as there are uncompleted results
available.

Volunteer BOINC project server
] Attach to project ‘ .] —ﬂ Dispatch application ‘
Application
S I .

Request work [= %’ :‘ Assign results ‘ ’ Generate work ‘
) 9 =
= Q
@) S i

Report results »{Validate results ‘ ’Assimilate results ‘

FIGURE 4.1: The basic workflow on the client and BOINC project server

4.2.2 Grid-enabling a simple BOINC project

A scientist attempting to turn an existing application into a volunteer computing project must
determine how the application will be parallelised, modify the existing application to make
use of the BOINC API and finally provide the server-side deamons responsible for scheduling,
generating new work units and validating and assimilating incoming results. The first of these
tasks, parallelising the computation, is highly application-specific and has little to do with
the structure and components of a BOINC project, but it may be insightful to give further
consideration to the BOINC API and the various deamons running on the server.

48 CHAPTER 4. VOLUNTEER COMPUTING

The BOINC API

The BOINC API provides a set of functions allowing the client and the application to commu-
nicate and improving portability of the application between different platforms. An application
must notify the client when it initialises through a call to boinc_init and return a value when
terminating so that the client may track whether the computation was successful or not. The
APT also handles input and output, resolving logical names to actual file names as specified in
the work unit and providing wrappers for functions which execute differently on different plat-
forms. An example of such a wrapper occurs in the boinc_fopen function which replaces the
standard fopen call for opening functions so that on Windows hosts, where files may become
temporarily locked, the function attempts to open the file multiple times within short succession
while on Unix, where fopen occasionally fails with a specific error code, it tests for this error
code and retries accordingly.

Checkpointing, or saving the current state of the computation in such a way that the computation
may be resumed from that point, is very important in volunteer computing as there is no way
of knowing when a host may be turned off or fail. An application may choose its own minimum
time between checkpoints. This decision is usually based on how long it takes to checkpoint, and
may repeatedly call the function boinc_time_to_checkpoint to determine when to checkpoint.
Checkpointing is also an example of a critical section of an application, which may not be
interrupted by the client.

TABLE 4.1: The core of the BOINC C/C++ API [92].

API method Description

int boinc_init()
The call notifying the client that a computation has begun.
boinc_cpu_time()
The CPU time that the current computation has taken.
int boinc_finish(int status)
The call notifying the client that a computation has been completed,
along with its exit status — 0 if successful or some integer error code.
int boinc_resolve_filename(char *logical_name, char *physical_name)
Converts logical file names, such as ‘in,” used in the application to
physical file names.
bool boinc_time_to_checkpoint ()
Tests whether it is time for the application to checkpoint.
void boinc_checkpoint_completed()
Notifies the client that a checkpoint has been completed, that the
countdown timer for checkpointing must be reset and that the pro-
gram is exiting a critical section.
boinc_fraction_done(double fraction_done)
Reports the current progress to the client.
void boinc_child_start()
Notifies the client that the main program has started a subsidiary
thread.
void boinc_child_done(double total_cpu)
Notifies the client that a subsidiary thread has been completed.

BOINC allows communication between the application and server through trickle messages,

4.2. The Berkeley Open Infrastructure for Network Computing 49

which are small messages sent up from the client or down from the server and which are assigned
a very high priority. A trickle down message may, for example, be sent to notify an application
that the result it is computing is no longer needed and should be aborted. Similarly, a trickle-up
message may be sent to the server to notify it that, although a result has exceeded its deadline, it
is still being computed successfully, in which case the original deadline should be extended. The
remainder of the API mainly focusses on providing methods for allowing the client to register
the time that a computation takes and monitor its progress. The full API, along with a brief
summary of every function as described in [92], may be found in Table 4.1.

Deamons

The main task of the work generator is inserting new work units or jobs into the project database.
This may happen once, at the start of the project, in a number of discrete batches or continuously
as results are returned by volunteers. It is also possible to develop a web interface which allows
for the remote submission of jobs. Before implementing the work generator, however, the project
manager must decide on templates for the work units and results. These templates are XML
(extensible markup language) files which provide the application with the necessary information
for performing a work unit and are typically re-used for millions of jobs. An input template
may, for example, specify the name of the actual file to which the logical file name must be
resolved, possible command-line arguments along with work unit attributes such as an estimate
of its execution time, the resources required for the computation and the deadline by which the
server expects to receive the result before re-issuing the work unit to a different host. Similarly,
the output template defines the number of files returned to the server and where they may
be located or generated. A selection of the most important options that may be specified in
the input and output templates may be found in Tables 4.2 and 4.3, respectively. The work
generator ensures that the required files and templates are available before entering the work
unit into the database, either through a command-line tool or a C/C++ method which is part
of the BOINC API.

It is highly likely that a new project will, at least initially, make use of the default scheduler
provided along with the BOINC source code. The scheduler is mainly responsible for dispatching
new versions of applications, accepting requests for work from hosts and assigning work to hosts
based on a combination of their available resources, the estimated execution time of the available
work units and the historical accuracy of a host. Larger work units are thus preferably sent
to hosts who have historically returned fewer erroneous results and who have more resources
available in order to minimise the expected computation time that will be wasted if a host
returns an error after an extended period of work. Secondary objectives which may be included
in the scheduler are completing a specific batch of work units as soon as possible and limiting the
number of work units received by a host on a single day (so as to prevent hosts from repeatedly
returning the same results and claiming credit for them).

The main task of the validator is to compare results for correctness. Care should be taken
when comparing results from different platforms — for example, the end-of-line character is
different in Windows and Linux, making a character-by-character comparison of the output files
impossible. If an application performs many floating-point operations, projects may elect to
enforce a measure called homogeneous redundancy to ensure that results from the same work
unit are assigned to identical platforms. Alternatively, “fuzzy” comparisons may be made by
comparing floating-point numbers with a degree of tolerance [92]. A measure called adaptive
replication may also be used, which dynamically determines the number of replications of a
specific work unit based on the historical error rate of the host to whom the first result is

20

CHAPTER 4. VOLUNTEER COMPUTING

TABLE 4.2: A selection of the parameters that may be specified in the input template of BOINC [92].

Work unit attributes

Description

open_name
command_line
rsc_fpops_est

rsc_fpops_bound

rsc_memory_bound

rsc_disk_bound

rsc_bandwidth_bound

delay_bound

min_quorum

target_nresults

max_error_results

max_total_results

max_success_results

priority
size_class

The logical name of the file used in the application, e.g. ‘in’.

The command-line arguments to be passed to the main application.
An estimate of the number of floating point operations required to
complete a work unit, used to estimate how long the work unit will
take on a given host.

An upper bound on the number of floating point operations required
to complete a work unit. If this bound is exceeded, the result will be
aborted.

An estimate of a work unit’s largest working set size. A result of
this work unit is only sent to hosts with at least this much available
RAM. If this bound is exceeded, the result is aborted.

A bound on the maximum disk space used by a work unit, including
all input, temporary, and output files. The result of this work unit
is only sent to hosts with at least this much available disk space. If
this bound is exceeded, the result is aborted.

If non-zero, a result is sent only to hosts with at least this much
download bandwidth. Mainly used for work units with very large
input files.

An upper bound on the time (in seconds) between sending a result to
a client and receiving a reply. If the client does not respond within
this interval, the server ‘gives up’ on the result and generates a new
result, to be assigned to another client.

The minimum size of a quorum. The validator is run when there are
this many successful results. If a strict majority agrees, the result
is considered correct. This value is set to two or more if redundant
computing is required.

The number of results created initially. This must be at least
min_quorum. It may be more in order to reflect the ratio of result
loss, or to get a quorum more quickly.

If the number of client error results exceeds this value, the work unit
is declared to contain an error; no further results are issued, and
the assimilator is triggered. This safeguards against work units that
cause the application to crash.

If the total number of results for a work unit exceeds this value, the
work unit is declared to be in error. This safeguards against work
units that are never reported (e.g. because they crash the core client).
If the number of successful results for a work unit exceeds this value,
and a consensus has not been reached, the work unit is declared to
be in error. This safeguards against work units that produce non-
deterministic results.

Higher-priority work units are dispatched first.

Used to define work units of different sizes, for example in the case
where the GPU version of an application is orders of magnitudes
faster than the CPU version.

4.2. The Berkeley Open Infrastructure for Network Computing 51

TABLE 4.3: A selection of the parameters that may be specified in the output template of BOINC [92] .

Output attributes Description

name The physical file name of the output file.

open_name The “logical name” by which the application will reference the file.

max_nbytes Maximum file size. If the actual size exceeds this, the file will not be
uploaded, and the job will be marked as an error.

url The URL of the file upload handler.

no_delete If present, the file will not be deleted on the server even after the job
is finished.

report_immediately If present, clients will report this job immediately after the output
files are uploaded, otherwise they may wait up to a day.

assigned— if the host usually returns accurate results, the probability of replication taking place
for that work unit will be small. Validation takes place by majority once a quorum of results
has been received and marks a result, along with its associated output files, as the canonical
result against which any other results of the same work unit are compared in order to determine
whether it was computed successfully and deserves credit. Two sample validators are provided
with the BOINC source code: the first is mainly used for testing purposes and simply marks
every received result as successful, while the second performs a bitwise comparison of output
files.

Once results have been verified, they should be marked accordingly in the database so that they
are not assigned to any further hosts. The input files of verified results may be deleted from the
location where they were accessible to hosts and the canonical output files may be moved to a
specific location. The sample assimilator does exactly this and it is up to project administrators
to decide which other post-processing tasks to perform on validated results.

Projects that use trickle messages must also provide a deamon to handle these messages. Trickle
messages may, for example, be used by the application to send its current computation state to
the server periodically so that the server may determine whether to assign partial credit for the
work done up to the current point or to abort the computation based on some internal logic.

The most important interactions in a BOINC project are illustrated in Figure 4.2. Note that
the transitioner and file deleter are responsible for generating new results if invalid or erroneous
results are received and deleting the input files of fully completed work units, respectively, but
have not been discussed since the default versions suffice.

Volunteer host BOINC project server
BOINC Client |, ______ »{ Scheduler ‘ ‘{ Work generator

Applicati
—{ Validator

|
— |
Ui—{ Assimilator ‘
|
|

Database — ’ File deleter

—{ Transitioner

FIGURE 4.2: An example of the server setup showing the interaction of the MySQL database with the
BOINC clients and various server deamons.

52 CHAPTER 4. VOLUNTEER COMPUTING

4.2.3 Special types of applications

In addition to the basic functionality described in the previous section, BOINC allows applica-
tions to display graphics, execute on multiple cores or GPUs through OpenCL [51] and CUDA
[72], or even to run entirely within a virtual machine.

Graphics applications

Publicly-launched volunteer computing projects usually attempt to provide volunteers with some
visualisation of the computation running on their machines, either as screensavers or in windows
which can be opened in the BOINC Client Manager. The main reason for providing such graphics
is to further engage the public in the goals of and progress made in a scientific project in order
to increase involvement. Examples of graphics provided by SETIQ@QHome and WCG may be seen
in Figure 4.3.

Influenza Antiviral

Drug Search ogzess: YAMUTMB

v, . i
N word commuitygid

FI1GURE 4.3: Graphical applications in SETI@Home and WCG provide volunteers with an indication of
the state of the current computation.

In a recent survey of 15627 volunteers by IBM’s World Community Grid project [49], however,
72% of volunteers stated that they either disabled the graphics or did not pay attention to it [81],
thereby casting some doubt on the actual benefit of graphical applications. Graphics applications
are usually separate from the main scientific application, built on a specific BOINC graphics
library and make use of OpenGL [27]. Communication with the main application takes place
through shared memory — the main application would periodically store a representation of its
current state and progress in a block of memory which is accessible to the graphics application,
from where it is read and displayed. Graphics applications can also display static images, text
or web-based graphics by opening browser windows pointing to specific URLs.

Muti-core and GPU applications

CPU manufacturers have been dealing with the limit placed on CPU frequency by increasing
the number of cores provided and it seems that this trend will continue in the foreseeable future
[44]. In cases where the completion time of individual work units have to be improved, or the
memory footprint of the application is too large to allow a separate copy of the application to
run on every core, it may be desirable to implement a multi-threaded application developed in
OpenCL, MPI [64], OpenMP [73], CUDA or a number of other languages. BOINC also supports

4.2. The Berkeley Open Infrastructure for Network Computing 53

what it calls ‘coprocessors,” or GPUs, designed by NVIDIA, AMD or Intel. Available GPUs are
reported to the scheduler by the BOINC client, which also keeps track of which instances are
currently allocated on every GPU. To prevent system failures, GPU kernels are executed within
critical sections, which may not be killed by the BOINC client and BOINC projects may define
work units of different size classes to compensate for the potentially dramatic differences in speed
between CPU and GPU versions of the same applications, thereby ensuring that a typical work
unit will take approximately the same amount of time irrespective of the architecture on which
it is executed.

Applications which run inside virtual machines

BOINC supports applications which run entirely within virtual machines. This approach has
two distinct advantages in that it provides the highest level of security for the host machine,
as virtual machines cannot access or modify the host system, and there is no need to build
applications for different architectures, as every application will run on a virtual computer with
exactly the same runtime environment on all platforms.

There are, however, also some additional complexities that arise from using applications inside
virtual machines. An example of such a complication is the fact that hosts require software
such as VirtualBox to mount the machine image, yet VirtualBox is not currently available for
all processors. Furthermore, GPU applications cannot currently run inside VirtualBox and
not all processors are capable of running both 32- and 64-bit virtual machines; images of both
architectures therefore have to be provided. Distributing the virtual machine image also increases
the size of the first download to approximately 200Mb, which may be prohibitive for volunteers
with limited bandwidth.

4.2.4 Setting up a server and project maintenance

As described in §4.2.1, a BOINC project consists mainly of a MySQL database, a directory
structure and a configuration file which specifies the options, deamons and periodic tasks that

must be performed and, as such, it is possible to use almost any computer as a BOINC server
[92].

Since reliability and security are of the utmost importance, a server should have a static IP
address and at the very least be placed behind a firewall and have a reliable internet connection
for connecting with volunteers. Additional hardware-related measures that may be taken to
improve reliability include an uninterrupted power supply, automatic backup protocols, adequate
cooling and hot-swappable spare server parts. Any Unix or Linux distribution may be used for
setting up a server and detailed instructions are available for the configuration [92]. Alternatively,
a project may elect to host its server either on the Amazon Elastic Cloud Computing (EC2)
service, which removes potential concerns involving hardware reliability and security, or host
the project within a virtual machine. A virtual machine image is available with all the software
packages required to set up a server, as are a number of installation and configuration scripts.

Once a server has been set up, a number of maintenance tasks have to be performed regularly,
such as reviewing the deamon logs for errors, deleting files as they are no longer needed and
archiving and purging old jobs from the database so as to prevent the database from becoming
to large. BOINC provides small programmes for all of these activities. It is possible, due to
the popularity of a project, that a server may not be able to keep up with the traffic generated
by the volunteers, which may result in dropped connections, slow website access, deamons that

54 CHAPTER 4. VOLUNTEER COMPUTING

fall behind and very slow database queries. A number of strategies are discussed in the BOINC
documentation for upgrading the server in such cases, including upgrading the server hardware,
hosting the database on a separate server, and parallelising the deamons and scheduler so that
multiple instances run continually.

4.2.5 Security concerns

According to [92], a number of security concerns arise from the inherently public nature of
volunteer computing, chief amongst which are:

e result falsification,

e credit falsification,

e denial-of-server attacks on the project servers,

e theft of project files or participant account information, including email addresses, and

e the distribution of malicious executables.

Result and credit falsification may be limited by adopting replication and validation protocols
and by limiting the number of results for which a user may receive credit in a single day. BOINC
protects projects against denial-of-service attacks, in which servers are overrun by requests and
transfers from automated programs, by providing a size limit for every file that is uploaded
to the server (refer to Table 4.3) and by making use of upload certificates. Every project is
responsible for protecting its own users’ account information against theft and servers should be
subjected to regular security audits. The greatest security risk to volunteer computing project is
the potential that a server may be broken into and used to distribute malicious executables that
wreak havoc on volunteer hosts. In order to prevent this, code-signing software is used in which
every approved and secure application version is authenticated. The computer responsible for
code-signing applications should be kept in ‘cold storage,” in other words, physically secure and
completely disconnected from the network so as to prevent attackers from breaking into it and
authenticating their applications.

4.2.6 Challenges facing volunteer computing

After a rather bright start, volunteer computing has decreased in the past few years, most
recently from approximately 290 000 volunteers in 2012 to 240000 in 2013 [4]. Volunteer com-
puting projects have also largely stagnated, with only very few, small projects being initiated
in recent years. The largest projects, such as GIMPS, SETI@QHome and Einstein@Home, are
all at least ten years old. Some of this recent stagnation may be attributed to the fact that
volunteer computing projects have largely failed to expand beyond their initial target audience
of technically minded males working in sectors such as engineering and information technology.
Indeed, a recent survey has shown that 90% of WCG’s volunteers are male and 70% are involved
in some kind of scientific occupation [81]. A number of initiatives have been launched to bridge
this gender and technical gap, the most successful of which seems to be a Facebook [98] initia-
tive, called Progress Thru Processors, which boasts more than 160 000 likes and a volunteer base
split evenly along gender lines [10].

Volunteer computing has traditionally been centred in the United States and Western Europe
with only minor contribution from developing countries, such as Brazil, India and China, who

4.3. Chapter summary 55

have potentially massive numbers of volunteers [81]. The main reason for this lack of contribution
seems to be the language barrier — the majority of projects are inaccessible to non-English-
speaking volunteers [35] and so there have been recent additions to the BOINC source code which
simplify the translation of projects. Additional problems arise from the quality of hardware,
especially in China, where the actual specifications of CPUs and GPUs often differ from the
reported names as many hardware brandnames are “unofficially” produced in factories [94].

4.3 Chapter summary

This chapter contains a historical overview of the notion of volunteer computing as well as a
review of the basic concepts of one of the middleware systems for volunteer computing, BOINC.
A Dbrief history of public resource and volunteer computing was presented in §4.1, from its
humble beginnings in Xerox’s Palo Alto Research Centre to the middleware system Condor and
eventually into the homes of millions by virtue of BOINC. BOINC, the predominant volunteer
computing middleware system, was discussed in §4.2. The basic workflow of a BOINC project
was reviewed in §4.2.1, while in §4.2.2 the process of grid-enabling an application, which consists
of incorporating the BOINC API into an existing application and creating deamons for the
project server, was discussed. More advanced functionality which allow applications to facilitate
graphical displays or execute on multiple CPUs or GPUs or within a virtual machine was briefly
discussed in §4.2.3. Server management protocols were considered in §4.2.4 and the chapter
closed with an overview of common security concerns and a discussion of the challenges facing
volunteer computing in §4.2.5 and §4.2.6, respectively.

In the next chapter this overview of the components of a volunteer computing project, and
BOINC specifically, will be used to create a volunteer computing project for the enumeration of
main classes of sets of & mutually orthogonal Latin squares.

o6

CHAPTER 4. VOLUNTEER COMPUTING

CHAPTER 5

A distributed volunteer project for the
enumeration of £-MOLS

Contents
5.1 A volunteer project for counting 3-MOLS of order 8 57
5.1.1 Server architecture 58
5.1.2 Grid-enabling the exhaustive enumeration algorithm 58
5.1.3 Deamons e 59
5.1.4 First enumeration results L. 59
5.2 Generalising to the enumeration of k-MOLS of ordern 60
5.2.1 Limiting work unit sizes 61
5.2.2 Dynamic splitting of work units 63
5.2.3 Implementing and validating the generalisation 64
5.3 Enumeration results emanating from an implementation 66
5.4 Chapter summary e e e e 68

This chapter contains a description of the processes involved in designing a distributed volunteer
computing project for enumerating k-MOLS using the middleware system BOINC. The basic
details of grid-enabling the enumeration algorithm of §3.3 are described in §5.1, and some pre-
liminary enumeration results are also reported. A work unit issuing policy aimed at managing
work unit sizes uniformly and utilising computing resources more efficiently is proposed and
verified in §5.2. The results of a pilot study, in which the main classes of 3-MOLS of order 8 are
enumerated, is presented in §5.3, along with partial results of an ongoing enumeration attempt
for main classes of 7-MOLS of order 9.

5.1 A volunteer project for counting 3-MOLS of order 8

BOINC [3] was selected as middleware for this research project since it is the most prevalent
architecture in use by existing volunteer computing projects. There are also active BOINC
support forums available online to project developers [92].

o7

58 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

5.1.1 Server architecture

An initial BOINC server was set up inside a virtual machine running the Debian 6 operating
system with an 8Gb virtual hard disk and dedicated access to 384Mb of random access memory
(RAM) from the host. The machine hosting the virtual machine has a 64-bit Linux distribution
with 8Gb of RAM. The virtual machine was run in bridged ethernet mode, which means that it
shows up as a separate machine on the network with its own static IP address so that the server
is always available at the same address for both volunteers signing up and hosts communicating
with the server.

5.1.2 Grid-enabling the exhaustive enumeration algorithm

The exhaustive enumeration of main classes of k-MOLS, as described in §3.3, parallelises
trivially — the subtrees rooted at the nodes on any level of the search tree may be enumer-
ated completely independently. The number of branches on the respective levels of the subtree
rooted at P on level ¢ — 1 is simply the sum of the branches counted on every level in the
respective enumerations of the children (on level i) of node P.

The main modification required to grid-enable the enumeration of k&-MOLS main classes is the
implementation of checkpointing. As described in §4.2.2, the main goal of causing an application
to checkpoint, or save the current state of the computation in such a way that the computation
may be restarted from it without any loss in accuracy, is to guard against losing progress through
unpredictable volunteer and host behaviour. An application requiring twenty four hours of
computing to complete a work unit which does not checkpoint and runs on a host which is only
available between 08:00 and 17:00 would, for example, never return results since nine hours of
computations are lost every day when the computer is switched off. The enumeration algorithm
Z(.j) has been fixed for all values of
1 up to some integer m, the number of feasible candidate universals for u,(flll, prior to testing for

orthogonality and class representatives, is completely deterministic. Indeed, the list of candidate

lends itself naturally to checkpointing, since, once the universal u

universals for ufflLl is always generated in exactly the same order, which means that any partial
Latin square may be described by specifying the position in the list of candidate universals of
the universal selected. All that is required to represent a partially completed k-MOLS, and
therefore any node of the original search tree in this manner are the positions of the selected
universals in each of the Latin squares, since the squares are completely independent prior to
the test for orthogonality.

To be able to restart the enumer- 1,010
ation from a checkpoint, the origi-
nal algorithm was adapted so that,
after reading the initial, partially
completed k-MOLS from an input
file, it searches for a checkpoint file
and, if one is available, reads in the
numbers of branches enumerated Level 3
previously. The enumeration then
starts at the designated candidate
universals instead of the first can-

Level 1

Level 2

FIGURE 5.1: A hypothetical enumeration tree showing the check-
pointing strategy. The blue part of the tree is traversed prior to
checkpointing at the node labelled A, the purple part of the tree
didate universal generated. Care jg traversed both prior to checkpointing and when restarting from
was taken to ensure that branches the checkpoint, and the red portion is traversed after restarting
counted prior to checkpointing are from the checkpoint at A.

5.1. A volunteer project for counting 3-MOLS of order 8 59

not counted twice, although some branches are, of course, considered a second time in returning
the computation to its previous state. Figure 5.1 illustrates how the traversal of a hypotheti-
cal search tree would checkpoint. The branches in blue were counted before checkpointing and
are not revisited, while the purple branches were also counted before checkpointing, but are
traversed twice since they had to be visited again in order to return the search to its previous
position. The red branches are enumerated once the traversal of the search tree restarts from
the checkpoint. In this case the checkpoint file will store the current node at the time of check-
pointing (labelled A in Figure 5.1). This node may be reached by choosing child three from four
on the first level (i.e. Cj3) and child three from three on the second (i.e. C7); the traversal
has encountered one node on level 0 thus far, three on level 1, seven on level 2 and three on
level 3. The checkpoint also registers the time that a computation has taken to date so that the
enumeration time reported upon completion reflects the actual total computation time. A new
checkpoint replaces all older ones so that there is always at most one checkpoint available per
result, thereby ensuring that the application restarts in its most recent location.

A final modification required is to allow the application to read input files from the logical
file ‘in’, write results to the logical file ‘out,” and read and write checkpoints to the logical
file ‘state.” Recall, from §4.2.2, that the result template, along with the BOINC API call
boinc_resolve_filename(), may be used to convert logical names to actual file names for
every individual result.

5.1.3 Deamons

Deamons were tasked with performing actions on the server, as described in §4.2.2. Work
generation takes place using a bash! script, which loops through the forty five partially completed
3-MOLS of order 8 found after inserting the 0-universals into each of the three squares, and
creates a corresponding work unit in the project database with an estimated runtime of 10™
floating-point operations, or approximately 720 hours, and a delay bound of ten days before the
scheduler gives up on a dispatched result.

Replication was used to ensure the correctness of results returned: Two results were initially
created for every work unit and the quorum was set to 2. Results are validated by a custom
validator which compares the number of branches found on every level of the tree. It was
not possible to use the default sample bitwise validator of BOINC for this purpose since the
enumeration time, which may differ between different hosts, is also included in the result. The
default scheduler and sample assimilator could, however, be used, since post-processing only
consists of moving the results to a specific folder, which is exactly what the the sample assimilator
does.

5.1.4 First enumeration results

The main classes of 3-MOLS of order 8 were enumerated by means of a BOINC distributed
project involving five hosts on the same platform, namely Intel i7 processors operating within a
Linux distribution.

A summary of the enumeration results is presented in Tables 5.1-5.3. Table 5.1 contains the
total numbers of results dispatched to hosts, along with the corresponding numbers of validated,
invalid and erroneous results received. A particularly high error rate was observed in the first
section of the enumeration tree, where six of the work units exceeded their maximum number

1See [41] for more information on the bash shell.

60 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

TABLE 5.1: Results issued in each section of the enumeration tree during the distributed enumeration
of main classes of 3-MOLS of order 8, along with the resulting redundancy values.

Nodes on Results

Section level 0 Work units Validated Error Invalid Total Redundancy

212523 17 23 46 43 0 89 5.2
212525 14 14 28 1 2 31 2.2
2123724 5 5 10 0 10 2
2127 9 9 18 0 0 18 2
Total 45 51 102 44 2 142 3.3

of allowable errors (in this case three) and had to be recreated. These errors played a large
part in increasing the overall redundancy rate from 2 to 3.2 and the reason for these errors had
to be investigated prior to further enumeration attempts. A break-down of the total number
of erroneous, valid and invalid results for each host may be seen in Table 5.2, along with the
total credit granted to each host for valid results and the total time required to carry out the
computations.

Note that the host with identification num- TapLE 5.2: The number of erroneous (E), valid (V)
ber 2 did not connect to the project during and invalid (I) results computed by each of the hosts,
this enumeration process and is thus excluded as well as the credit granted and complete enumera-
from the summary. It is clear from Table 5.2 tion time required (in seconds) during the enumera-
that the majority of the errors occurred on tion of 3-MOLS of order 8.

host 4 and closer inspection showed that this
was due to an error in the work generator
which caused some results to be downloaded 1 4 2

Host FE Vv Credit CPU Time

1027.64 211469

to volunteer hosts without the necessary ac- 3 1 36 4969.13 730630
companying files. The total enumeration time 4 29 43 6104.15 1621431
increased by a factor of approximately 5 from 5 8 14 10488.90 1352450
the enumeration in §3.3. This increase is con- 6 2 7 5566.54 713200

N | O OO NO| N

siderably more than the overall redundancy of 44 102
3.2 would suggest, but is explained by the fact
that the redundancy in the first section, which accounts for almost 90% of the total enumeration
time reported in §3.3, is 5.2.

28156.36 4629181

Both the smallest and largest successfully completed work units were computed on host 3, with
enumeration times of 1.76 and 133 338 seconds, respectively. A work unit took, on average,
31278.3 seconds to complete (approximately eight and a half hours), which is much more than
the ideal work unit length of between one and six hours mentioned in various online sources [19].
The canonical (validated) number of branches counted on every level of the search tree, grouped
into cycle structures, may be seen in Table 5.3; these results correspond with the counts in §3.3
and [53, p. 114].

5.2 Generalising to the enumeration of k--MOLS of order n

Although the enumeration of the main classes of 3-MOLS of order 8 described in the preceding
section demonstrates that a volunteer computing project can, in principle, be used for the
enumeration of main classes of k-MOLS, the approach of §5.1 is not suitable for the enumeration

5.2. Generalising to the enumeration of k-MOLS of order n 61

TABLE 5.3: The number of results issued in each section of the enumeration tree during the distributed
enumeration of 3-MOLS of order 8, along with the canonical number of branches on each level of the
search tree.

Results Branches on level
Section issued 0 1 2 3 4 5 6 7
zlzgz;z, 84 17 12501028 1484518094 18814494 55 23 22 20
zlz% z5 31 14 3358273 61 708 802 63157 97 92 84 17
212374 10 5 52059 5283 1 0 0 0 O
2127 18 9 37403 9079 82 64 53 53 2
Total 142 45 15948763 1546241258 318877734 216 168 159 39

of k-MOLS of order n > 8. For these larger enumeration problems the size and therefore the
enumeration time required to traverse a subtree of the search tree is unknown before it has
actually been enumerated. In the enumeration of 3-MOLS of order 8, traversing the smallest
subtrees required approximately one second of computation time, while the largest ones required
more than a day of computation time. For higher orders it is virtually assured that the subtrees
rooted on level 0 will require months or even years of computation time. Expecting a single
volunteer to complete even a month-long work unit is unreasonable and will most likely lead to
a significant amount of wasted computing time due to both incomplete results and replication.
In §5.1 the total enumeration time is also bound from below by the computation time required
to complete the longest work unit, independently of the number of available hosts. A scenario is
therefore conceivable where thousands of volunteers have completed all the available work units,
except for a few that are still in progress and which may require excessive computing times.
Indeed, this happened in the enumeration of 3-MOLS of order 8: After 60000 seconds, only six
results were still active, which means that the majority of the thirty six CPUs available between
the five hosts were idle and unable to contribute for the remainder of the enumeration. Finally,
highly variable work unit sizes are also impractical because it prohibits accurate estimations of
the work unit size and renders useless the built-in protection of a work unit’s maximum_fpops
attribute against erroneous computations.

The work unit management policy described in the remainder of this section may perhaps be
best understood by considering a hypothetical volunteer computing project involving four hosts
and a single work unit of fifteen hours, as illustrated in Figure 5.2. In this example, the above-
mentioned, potentially fatal concerns are, firstly, that the work unit is too long for computation
on a single host and, secondly, that, although additional computing resources are available, the
total computing time required is bounded from below by the serial computing time of this single
work unit.

5.2.1 Limiting work unit sizes

Three ways of limiting work unit sizes are considered in this subsection, namely decreasing
the size of work units by precomputation, splitting work units into smaller units and recycling
results.

The first potential way of limiting work unit sizes is to perform some amount of precomputation
so as to enumerate all the nodes in the search tree from the root down to a certain level, and
only to assign volunteers work units from that level downwards. This approach is attractive due
to its simplicity and was indeed adopted implicitly in §5.1 when the forty five nodes on level 0 of

62 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

Host 1
Host 2
Host 3
Host 4

10 15

o4

Time (hours)

F1GURE 5.2: A graphical illustration of a hypothetical volunteer project consisting of four hosts and a
single result requiring fifteen hours of computation time under the approach of §5.1.

the search tree for the main classes of 3-MOLS of order 8 were enumerated and used as starting
points for the generation of work units, but it also has two serious drawbacks. Firstly, there
is no way of knowing in advance how much precomputation would be required to enable the
generation of suitably sized work units and for higher orders of MOLS these precomputations,
which amount to a breadth-first exploration of the highest levels of the search tree, may be
a daunting computational challenge in itself. For example, just inserting the O-universals into
empty 7-MOLS of order 9 required approximately ten days of computing time and for 5-MOLS
of order 10 this step could not be completed in thirty days of continuous computation. Secondly,
this approach dictates that all nodes at a certain level must be stored so that they may later be
used as starting positions for the generation of work units. But just storing the approximately
1.5 billion nodes on level 2 of the enumeration tree for 3-MOLS of order 8 may prove cumbersome
and for k-MOLS of orders n > 8 this problem will be exacerbated.

A second approach toward limiting work unit size involves splitting the subtree rooted at node P
into a number of different subtrees, which remain rooted at P. This can easily be accomplished
by introducing a limit, or upper bound, on the position of the last candidate which should
be considered by the current work unit alongside the starting position in the list of candidate
universals (recall that the starting position was introduced for checkpointing purposes in §5.1.2).
A single work unit consisting of a node with, say, 100 candidate universals on level ¢ may be
split into five work units by specifying the [start, limit]-values for successive work units as
[0, 21], [20,41], [40, 61], [60, 81] and [80,101]. Note that, in this case, candidate universals 0 to
20 will be considered in the first work unit, since an upper bound of 21 was enforced. This
allows for the generation of smaller work units without the need for storing further nodes of the
search tree, but it does nothing to address the problems of wildly varying work unit sizes — the
distribution of work unit sizes will be exactly what it was before, but scaled down by a constant
factor (in the above example this constant factor would be five). Since the size of the search
tree grows exponentially as a function of the MOLS order n, such a constant factor decrease in
work unit size is unlikely to be effective as n grows.

A third method of limiting work unit sizes, and the one which seems to hold the most potential,
is to limit the computation time allocated to or the number of floating point operations allowed
per work unit before returning a result. The approach of limiting the computing time allotted
to a work unit introduces complications, since the actual amount of work done depends largely
on host specifications and it will be difficult to validate computations that were interrupted at
different stages of progress. It does, however, seem feasible to limit the amount of computation
allowed per work unit by restricting the number of calls to a certain function. Limiting the
number of calls to the function for testing whether a candidate universal is orthogonal to the
current partially completed MOLS (part of step 9 of Algorithm 3.2 in §3.3) to, for example,

5.2. Generalising to the enumeration of k-MOLS of order n 63

5 x 10° ensures work units of approximately one hour in length and seems to be a practical
approach toward limiting work unit size. After reaching this limit, the application is forced to
checkpoint and return this checkpoint as a result, together with a tag signalling to a script on
the server that the result is incomplete and should be reinserted into the project database as
the starting position of a new work unit. If the work unit is completed before reaching the call
limit, then the result is returned together with a tag signalling that it is a final result and that
there is thus no need for recycling.

The effects of employing this policy of recycling work units after an hour of computation in the
hypothetical volunteer computing project is illustrated in Figure 5.3. Recycling is successful in
ensuring work units of a uniform size independently of the initial size of the subtree, but the
hypothetical enumeration makes very poor use of the four available hosts — the total time to
completion remains fifteen hours, since the work units are all computed in series. A further
parallelisation is thus required to remove this dependence on the sizes of the original subtrees.

Host 1 ¢— ——e —e —e
Host 2 — —e [D
Host 3 ~——se —e ——o—0o
Host 4 —e —e
1 1 1
5 10 15

Time (hours)

FIGURE 5.3: The effect of the recycling policy on the hypothetical volunteer computing project consisting
of four volunteer hosts and a single work unit requiring fifteen hours of computation time.

5.2.2 Dynamic splitting of work units

The practice of traversing the different parts of a subtree of unknown size in series is likely to
be impractical, but thanks to the way in which work units are repeatedly recycled, it is possible
to improve on this dramatically on the serial enumeration time of a subtree.

A method for splitting subtrees into multiple smaller

subtrees rooted at the same node was discussed in the

previous section, but was discarded as a viable ap-

proach because it only offered a constant factor de- Host 1

crease in size, which is negligible if the subtree size Host 2 e
grows exponentially. However, by constantly recycling Host 3 e
results, repeated opportunities for such a splitting of Host 4

subtrees are presented, which may lead to both signif- |
icantly smaller work units and a further parallelisation 5

Ti hours
in the traversal of a single subtree. The proposed so- ime (hours)

lution is thus to split work units into two parts, as FIGURE 5.4: A visual representation of
described in §5.2.1, before recycling them. Although ;10 work performed by four hosts to com-
work units may easily be split into more parts, it is plete a work unit of 15 hours under the
only required to repeatedly split them into two parts recycling and splitting policy. Every line
so as to decrease the expected completion time (mea- segment represents a single work unit, and
sured from the start of the traversal to the moment Work units of the same colour were created

that the last portion of the traversal concludes, and during the same round of recycling.

64 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

not as the sum of the traversal times) exponentially, given sufficiently many hosts. Instead of
the entire enumeration being bounded from below by the time that the traversal of the largest
subtree takes, say t, it is thus now bounded from below by log, t.

Figure 5.4 illustrates the impact of this approach towards the splitting of subtrees, when used
in conjunction with the recycling policy, in the same hypothetical volunteer computing project
as considered in Figures 5.3 and 5.2. It is clear that the subtree will be fully traversed much
earlier under this work unit management policy, and also that it leads to a much more efficient
utilization of the available resources.

5.2.3 Implementing and validating the generalisation

In order to facilitate the recycling and dynamic splitting of subtrees, the formats of the input,
checkpoint and result files were changed in such a way that checkpoints could be returned as
results and that results could be re-issued as starting positions. An example of a file in this
format is shown in Table 5.4. An A on the first line means that the work unit has been completed,
while a B signals that it is a checkpoint for recycling. Furthermore, the file sections containing
the positions, current branch counts, time, etc. (shown in grey) are optional components.

It was decided to split work units only when the remaining number of unsent results do not
exceed the total that could potentially be assigned to the hosts had they all requested work
simultaneously, in other words, whenever there was a chance of under-utilizing some of the
hosts. This practice typically prevents a large backlog of work units building up due to the
incessant splitting of work units. The policy of recycling and dynamic splitting of work units was

TABLE 5.4: The general file format used for starting positions, checkpoints and completed results in the
enumeration of main classes of k-MOLS of order n. Everything after the starting position (coloured gray)
is optional.

General file format Description

@B A - completed, B - recycle
8 3 n k

01234567 02143675 03412756 Starting position
#Positions

-1-1-1-1-1-1-1-1-1
284 2120 2119 592 2120 2119 1001 2120 2119

634 784 783 146 793 792 92 792 791 Start, limit and number of
-1 255 254 -1 251 250 -1 250 249 candidates for every universal and
-1 69 68 -1 68 67 -1 68 67 every Latin square

-1 15 14 -1 14 13 -1 10 9
-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1-1-1
705032706 Number of calls to isOrthogonal
#Branchcounts

0 0 0 55 6365 25137 423490...
#Total time

1239.4 seconds

#MOLS found

0

Number of branches counted on
every level of the tree
Enumeration time for this portion
of the tree

Number of MOLS found in this
portion of the tree

5.2. Generalising to the enumeration of k-MOLS of order n 65

Algorithm 5.1: Split and recycle results

input : A list, £, of received output files
output: New work units are created where needed

1 begin

2 for every output file f in £ do

3 if f is a checkpoint then

4 if the number of unsent results is below a certain level then

5 ‘ Split the remaining work into two parts and create a new work unit for each
6 else

7 L Recycle the checkpoint file by creating a new work unit

8 | Move f to the a folder of completed results

9 end

implemented on the BOINC project server in the form of a Python [80] script which periodically
executes after the assimilator has moved all the completed results to a folder. Every completed
result marked as a checkpoint may be split, depending on the current level of unassigned work
units, and is recycled as a new work unit. Completed work units are moved to a different folder
where the current traversal state of the search tree is updated. A pseudo-code version of this
script is given in Algorithm 5.1.

The policy was tested for feasibility at the ninth node on level 0 of the enumeration tree for main
classes of 3-MOLS of order 8, since this was the node on level 0 producing the largest subtree.
The details of the resulting enumeration, with a redundancy factor of 2, may be seen in Table 5.5.
Note that the length of the longest work unit was approximately eighty minutes, compared to
the more than thirty seven hours required during the serial enumeration. The computation time
associated with an average work unit decreased to approximately forty minutes which, although
perhaps somewhat short, carries much less risk of lost computation time than before. Very little
overhead was involved in handling multiple work units, since the average computation time per
replication of 134 977.7 seconds compares rather favourably to the serial enumeration time of
132480.7 seconds. Furthermore, the computation was divided much more evenly between the
hosts under the recycling and dynamic splitting policy described above (§5.2.1 — §5.2.2) and the
final result was received approximately twenty one hours after the generation of the first work
unit — a significant improvement on the thirty eight hours required by the serial enumeration.

TABLE 5.5: A comparison of the traversal of the subtree from the ninth node on level 0 of the enumeration
search tree for main classes of 3-MOLS of order 8.

Policy Host Valid Credit CPU Time Smallest wu Largest wu Avg. wu

§5.1.2 3 2 1868.22 265 818.7 132480.7 133338 132909.35
1 46 1377.08 111586.0 0.01 3856.28 2425.78
3 24 516.17 50022.0 0.01 4570.62 2084.25
5.2 5) 2 15.76 1174.1 585.92 588.54 587.03
6 34 1887.41 107173.4 0.01 4266.06 3152.16

Total 106 3796.43 269955.4 0.01 4570.62 2546.75

66 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

5.3 Enumeration results emanating from an implementation

Following the successful test on the ninth node on level 0 of the enumeration tree of 3-MOLS
of order 8 described in §5.2.3, the recycling and dynamic splitting policy was employed in a
complete enumeration of main classes of 3-MOLS of order 8, the results of which are summarised
in Tables 5.6-5.7. It may be seen in Table 5.6 that the number of errors, and therefore also
the overall replication rate, has decreased dramatically from §5.1. The 19 results that reported
errors were all due to volunteers manually aborting results. As expected, the policy of recycling
and dynamically splitting work units lead to significantly more work units being created than
in the original distributed enumeration summarised in Table 5.2. When employing this work
unit management policy in the traversal of larger search trees, care must be taken to ensure
that sufficient storage space is available for new work units. The length of the largest work unit
is less than three hours, well within the accepted range, and the average work unit length of
approximately 45 minutes may be slightly increased in future enumerations to lighten the load
on the server.

This success of this pilot study suggests use of this volunteer computing project to attempt at
finding novel enumeration results. To start this ambitious endeavour, the enumeration instance
with the smallest expected computation time was selected. Based on the information in Table 3.6
and §3.4, it is expected that the main classes of 8-MOLS of order 9, or those of 7-MOLS of order
9, will be the easiest to enumerate. As was, however, mentioned in §3.2, the number of main

TABLE 5.6: The number of results issued in each section of the enumeration tree during the distributed
enumeration of 3-MOLS of order 8 under the recycling and splitting work unit management policy, along
with the resulting redundancy.

Section Nodes on work units Results Redundancy

level 0 Validated Error Invalid Total (r)
212323 17 474 948 19 12 979 2.06
212325 14 50 100 0 0 100 2
2123724 5 5 10 0 0 10 2
2127 9 9 18 0 0 18 2
Total 45 538 1076 19 12 1110 2.06

TABLE 5.7: A summary of the work done by every host that contributed to the enumeration of the main
classes of 3-MOLS of order 8, including the total computation time performed by every host and the
length of the shortest, average and longest work unit it computed.

Host FErrors Valid Invalid CPU Time Smallest wu Largest wu Avg. wu

1 0 277 0 756996.0 0.01 4536 2732
3 19 110 1 477098.9 1335 9445 3669
4 0 261 2 781637.5 0.01 6731 2972
5 0 121 1 267248.4 0.01 5003 2190
6 0 94 6 357733.1 0.01 8950 3577
7 0 61 2 160880.3 0.00 6612 2553
9 0 87 0 193267.3 0.01 4391 2221
10 0 65 0 97090.8 0.01 4394 1493

Total 19 1076 12 3091952.4 0 9445 2786

5.3. Enumeration results emanating from an implementation 67

classes of 8-MOLS of order 9 is known due to a result by Owens and Preece [76] and so it was
decided to launch a much larger pilot study with the long-term goal of enumerating the main
classes of 7-MOLS of order 9.

Thanks to the generosity of the computing divisions of the Faculties of Natural Sciences and
Economics at Stellenbosch University, it was possible to add a further 190 computers with
Intel i5 processors to the twelve volunteer hosts originally used in the distributed enumeration
of main classes of 3-MOLS of order 8. The maximum daily throughput of this distributed
computing project is approximately 2 000GHz-days, compared to the estimated daily throughput
of 1250GHz-days of the high performance cluster at Stellenbosch University.

The search tree for main classes of 7-MOLS of order 9 consists TABLE 5.8: The distribution of
of six sections and a total of 6 670 346 nodes on level 0, signif- nodes on level 0 over the different
icantly more than the 45 nodes on level 0 in the enumeration Sections of _the enumeration search
search tree for main classes of 3-MOLS of order 8. The dis- "¢ for main classes of 7-MOLS of

tribution of the nodes on level 0 over the different sections of order 9.

the enumeration tree for 7-MOLS of order 9 may be seen in Section Nodes
Table 5.8 and for all k--MOLS of order 9 in Table 3.11 in §3.4. ol 926 486
The two sections corresponding to the cycle structure repre- 217324 AT27973
sentatives 212325 and 2127, containing 647 and 6 nodes on level 212923 776991
0, respectively, have been traversed completely without finding 212226 238243
any 7-MOLS of order 9, or even a single node on level 1 of the Z12325 647
search tree. The absence of a 7-MOLS of order 9 (which are 2173 6
known to exist) in these two sections is not surprising, because 2128 0
together they contain only 653 of the 6670346 nodes on level 9 6670 346

0 of the search tree.

Traversal of the sections of the enumeration search tree for main classes of 7-MOLS of order 9
corresponding to the cycle structure representatives zjz92¢ and zlzgz§ is currently in progress
and a summary of the current state of the enumeration in these sections may be seen in Table 5.9.
The subtrees of approximately 34% of the nodes on level 0 of section z1292¢ have been traversed
without uncovering a main class 7-MOLS of order 9. The subtrees rooted at a tenth of the
nodes in the section 212923 have also been traversed, leading to the discovery of three complete
7-MOLS of order 9, however, all three the completed 7-MOLS had smaller paratopes and were
eventually discarded. Although no main class representatives have thus yet been found, this
does mean that there is at least one main class of 7-MOLS of order 9 (this is, of course, also
implied by the existence of 8-MOLS of order 9).

It is hoped that this enumeration may be continued until completion. Insights gained form this
enumeration attempt may prove pivotal to the success of using volunteer computing to obtain
further novel enumeration results.

TABLE 5.9: The aggregated computation time and number of nodes encountered thus far on every level

within the two sections of the enumeration search tree for main classes of 7-MOLS of order 9 corresponding

to the cycle structure representatives 212026 and 2122235 currently being computed.

Level

Section 0 1 2 3 4 5 6 7 8 Time (s)
21 22z§ 82872 2080 0 0 0 0O O O O 1581566
z1222¢ 225140 26571 34 3 3 3 3 3 0 2827864

68 CHAPTER 5. A DISTRIBUTED VOLUNTEER PROJECT FOR THE ENUMERATION OF k-MOLS

5.4 Chapter summary

This chapter contains a description of the process of grid-enabling the exhaustive algorithm
of §3.3 for enumerating main classes of k-MOLS of order n. A simple BOINC project for the
enumeration of main classes of 3-MOLS of order 8 was described in §5.1. This description
included the specifications of the BOINC server in §5.1.1, the changes required to the original
enumeration algorithm in §5.1.2 and a summary of the deamons implemented in §5.1.3. The
implementation of the distribution of Algorithm 3.1 was verified by replicating the results in
Table 3.4.

Although this first enumeration attempt successfully distributed the computation to volunteers,
the distribution schema is impractical for higher-order search spaces, chiefly due to the effect
of subtrees of unknown sizes in the enumeration search tree. A work unit management policy
was proposed in §5.2 firstly to limit work unit sizes by recycling results, as described in §5.2.1,
and secondly to improve the utilisation of available resources, as described in §5.2.2. This
is accomplished by reducing the time required to traverse a large subtree from ¢ seconds, if
performed serially, to logy t seconds using parallelism as a result of the splitting of work units.

A pilot study incorporating this work unit management policy was launched for the enumeration
of main classes of 3-MOLS of order 8 in §5.3. This pilot study was a success, both in terms of
the actual enumeration results and the suitability of the work unit sizes assigned to volunteers.
This confirmed the potential that volunteer computing holds for the enumeration of equivalence
classes of MOLS and resulted in the launch of a much larger and ongoing enumeration of main
classes of 7-MOLS of order 9. This enumeration makes use of computing resources volunteered
by the Faculty of Commerce at Stellenbosch University, and partial results obtained thus far
were reported.

CHAPTER 6

Conclusion

Contents
6.1 Overview of the work contained in this thesis 69
6.2 An appraisal of the contributions of this thesis 71
6.3 Future work 71

In the first section of this final chapter, the work contained in this thesis is briefly recounted.
This is followed by an appraisal of the contributions of this thesis. The chapter closes with a
brief reflection on possible future avenues for research arising from the work documented in this
thesis.

6.1 Overview of the work contained in this thesis

A volunteer computing project was designed in this thesis for the enumeration of main classes of
k-MOLS of order n in an attempt to overcome the current computational barrier that previous
enumeration attempts have encountered.

The prerequisite mathematical notions required for this endeavour were reviewed in Chapter 2,
in partial fulfilment of Research Objective I of §1.3. In §2.1, the notion of a permutation was
introduced and this was followed by a very brief review of a number of group theoretic notions
which have a direct bearing on the theory of Latin squares. The relevant theory underlying
Latin squares was discussed in §2.3, with a specific emphasis on the notion of orthogonality
between Latin squares and sets of Latin squares in §2.3.2 and the various main class invariant
operations which may act on a single Latin square or k~-MOLS in §2.3.3.

In Chapter 3, the problem of counting structurally distinct Latin squares and MOLS was consid-
ered. In §3.1, it was shown how Latin squares (and MOLS) may be partitioned into equivalence
classes based on transformations of specific types which act on them. This, together with the
historical overview of previous work on the enumeration of the various equivalence classes of
Latin squares and MOLS in §3.2, fulfils Research Objective II of §1.3. An exhaustive back-
tracking algorithm was developed for the enumeration of main classes of k~-MOLS of order n
in §3.3. This algorithm finds a single representative in each of the main classes of a k-MOLS

69

70 CHAPTER 6. CONCLUSION

of order n by traversing a search tree and pruning away branches whenever possible. Even for
MOLS of relatively small orders such as n = 9 and n = 10, however, this search approach
becomes computationally very expensive. Numerical results on the enumeration of main classes
of MOLS obtained by this algorithm were also reported in §3.3. These results served to validate
the correctness of the algorithmic implementation and to provide empirical evidence showing
that the implementation is, at least in specific cases, more efficient than previous implementa-
tions found in the literature. The enumeration of main classes of MOLS of orders 9 and higher,
however, remain computationally infeasible using the algorithmic approach of §3.3. Techniques
for estimating the size of the relevant search trees were explored in §3.4. Estimates of the sizes
of the search trees and potential run-times associated with the enumeration of main classes of
k-MOLS of order 9 and higher were provided in §3.4. Research Objectives IV and V of §1.3
were therefore fulfilled in §3.3 and §3.4, respectively.

The notion of volunteer computing was introduced in Chapter 4 as a potential way of overcoming
the computational barrier currently prohibiting the enumeration of main classes of MOLS of
orders 9 and, more importantly, order 10. The history of distributed computing in general, and
specifically volunteer computing, was reviewed in §4.1. The components and working of BOINC,
the predominant middleware used in volunteer computing today, were examined in some detail
in §4.2. Attention was also given to special types of applications which make use of paralellism
or GPUs, as well as setting up a server for a volunteer computing project. The chapter closed
with an exposition on the security concerns and challenges related to the widespread adoption of
volunteer computing. This chapter further contributed to the fulfilment of Research Objective
I of §1.3.

In Chapter 5, a volunteer computing project was designed for the enumeration of main classes
of MOLS. A project server was set up in a virtual machine and Algorithm 3.1 was modified
to incorporate checkpointing and the relevant calls to the BOINC application programming
interface. The main classes of 3-MOLS of order 8 were successfully enumerated, but a number
of factors related to the way in which subtrees of unknown size were traversed raised concerns
about the feasibility of this approach towards enumerating main classes of MOLS of higher
orders. A work unit management policy was therefore proposed in §5.2 to ensure that work
units do not exceed a certain size, that the available computing resources are efficiently used
and that the overall computation time is not bounded from below by the time it takes to traverse
the largest subtree on a given level of the enumeration search tree. The policy, together with
its implementation, was verified by traversing the largest subtree rooted on level 1 of the search
tree for 3-MOLS of order 8. The design of the project, together with the work management
policy, fulfil Research Objective VI of §1.3.

Following the success of this test, a pilot study was launched locally to fully enumerate the main
classes of 3-MOLS of order 8 again and to confirm that the work unit management policy allows
the volunteer computing project to generalize to k-MOLS of any order while making efficient use
of resources and without placing unnecessary loads on the project server. The successful pilot
study stands in fulfilment of Research Objective VII of §1.3. Because using volunteer computing
for the enumeration of main classes of mutually orthogonal Latin squares seems wholly feasible,
the lengthy process of enumerating main classes of 7-MOLS of order 9 was initiated, since this
is the smallest instance for which the number of main classes remains unknown. Although some
preliminary results were obtained for this enumeration instance in §5.3, the enumeration attempt
is still ongoing and makes use of approximately 150 computers from the Faculty of Commerce
at Stellenbosch University. The success of the pilot study and the ongoing enumeration of main
classes of 7-MOLS of order 9 are in fulfilment of Research Objective VIII of §1.3.

6.2. An appraisal of the contributions of this thesis 71

6.2 An appraisal of the contributions of this thesis

The main contributions of this thesis are threefold. The first contribution is an extension to the
work of Kidd [53], who enumerated the main classes of k-MOLS of orders 3 < n < 8. In addition
to verifying the enumeration results reported in [53], estimates for the sizes of the enumeration
search trees for k-MOLS of orders 9 and 10 were provided in this thesis, along with a discussion
on the shape and nature of these search trees. Evidence was also provided in §3.4 that the
universal uél) plays an important, hitherto unrecognised role in determining the structure of the
subtrees containing that cycle structure representative. This contribution was published in [8].

The second contribution of this thesis is the design of a distributed volunteer computing project
aimed at overcoming the computational barrier encountered in previous attempts at enumerat-
ing main classes of k-MOLS. The volunteer computing project was designed using the BOINC
middleware system and incorporates a work unit scheduling policy making it possible to enu-
merate search trees of arbitrary sizes effectively. This volunteer computing project has the
added benefit that the work unit management policy is likely to be equally valid for recursive
enumeration algorithms commonly associated with a number of other combinatorial problems.

The final contribution of this thesis is a pilot study launched as a proof-of-concept experiment
to show that volunteer computing may indeed be a viable approach towards enumerating main
classes of k-MOLS of order n > 9. This finding increases the tools available to researchers
attempting to answer the celebrated question of the existence of a 3-MOLS of order 10. A
journal paper on this pilot study is in its final stages of preparation, and is expected to be
submitted soon for publication.

6.3 Future work

This section contains a number of suggestions for future work related to Latin square enumera-
tion that emerged while this research was conducted. The first two suggestions are focused on
the volunteer computing project for the enumeration of main classes of MOLS.

Proposal 6.1. Publicly launch the volunteer computing project designed in Chapter 5 for the
enumeration of main classes of MOLS, potentially in collaboration with a university department
or a large corpration.

Various challenges related to the security of a volunteer computing project were safely ignored
in this thesis, since the project was only launched on Stellenbosch University’s internal network
and therefore not exposed to potentially malicious external attacks. These security concerns, as
well as challenges related to attracting and retaining volunteers, need to be investigated before
a public launch is to be successful.

Proposal 6.2. Investigate whether the search may be sped up significantly by further parallel-
lising the computation of work units.

As was mentioned in §4.2.3, BOINC facilitates parallellised CPU and GPU processing, although
the current application, documented in Chapter 5, only makes use of a single CPU at a time. It
is possible that the computation time may be decreased by further parallelisation.

The following four potential avenues for further research deal with various aspects of the exis-
tence, classification and enumeration of the equivalence classes of sets of mutually orthogonal
Latin squares considered in this thesis.

72 CHAPTER 6. CONCLUSION

Proposal 6.3. Attempt to generalise recent state-of-the art algorithms for the problem of group
isomorphims to quasigroups and, by extension, MOLS.

Recent developments in computer science, chiefly by Rosenbaum [84], have led to a decrease in
the complexity of the best-known test for whether two groups are isomorphic, in other words,
whether their respective Cayley tables may be relabelled to be equal. If a similar generalisation to
quasigroups is possible, an algorithm of the same order of complexity will apply to MOLS. If such
an algorithm is available, it suggests an alternative enumeration approach for the equivalence
classes of MOLS. The algorithm may then be used to construct a list of smallest partial MOLS
from each of the different transformation classes encountered up to that point on every level of
the enumeration tree. New partial MOLS may either be inserted into the list or pruned away.
If sufficient storage space is available, such an algorithm may well rival Algorithm 3.1.

Proposal 6.4. Pursue better estimates of the enumeration search tree sizes for MOLS of higher
orders to gain further insight into any potentially exploitable structures of these trees.

A number of techniques exist for finding accurate, early predictions for branch-and-bound tree
sizes, some of which may be adapted for general backtrack search trees. An example of such a
technique is that of Cournuéjols et al. [26].

Proposal 6.5. Study the properties of the transformation class generated by (m,, ., €)-type
transformations of MOLS.

The author is unaware of any previous or current investigations into the transformation class
generated by the (7,7, €)-transformations, which are principal isotopisms and additionally
allow a conjugate operation.

Proposal 6.6. Compare the computation time of techniques which only find a single solution
(as opposed to enumerating all solutions), such as certain linear and constraint programming
techniques, or any number of metaheuristics, to the time Algorithm 3.1 takes to find the first
class representative.

A number of construction techniques for k-MOLS were not considered in this thesis, but may
be included in a study primarily focussed on attempting to prove the existence (or otherwise)
of a 3-MOLS of order 10.

References

ALLEN B, 2005, Einstein@Home, [Online], [Cited June 12", 2014], Available from http:
//einstein.phys.uwm.edu/.

ALLENBY RBJT, 1991, Rings, fields, and groups: An introduction to abstract algebra,
Butterworth-Heineman, Oxford.

ANDERSON DP, 2004, BOINC: A system for public-resource computing and storage, Pro-
ceedings of the 5" IEEE/ACM International Workshop on Grid Computing, Pittsburgh
(PA), pp. 4-10.

ANDERSON DP, 2013, BOINC status and plans, Proceedings of the 9" BOINC workshop,
Grenoble.

ANDERSON DP. 2003, Public computing: Reconnecting people to science, Proceedings of
the Conference on Shared Knowledge and the Web, Madrid, pp. 17-19.

ANDERSON DP, CoBB J, KORPELA E, LEBOFSKY M & WERTHIMER D, 2002, SETI@home:
An experiment in public-resource computing, Communications of the Association for Com-
puting Machinery, 45(11), pp. 56-61.

BAcHET CG, 1884, Problémes plaisants & délectables: Qui se font par les mnombres,
Gauthier-Villars, Paris.

BENADE JG, BURGER AP & VAN VUUREN JH, 2013, The enumeration of k-sets of
mutually orthogonal Latin squares, Proceedings of the 42 Conference of the Operations
Research Society of South Africa, Stellenbosch, pp. 40—49.

BITTORRENT, 2013, BitTorrent, [Online|, [Cited July 21%, 2013], Available from http:
//www.bittorrent.com.

BLUMBERG M, 2013, GridRepublic and Progress Thru Processors status report, [Online],
[Cited September 25", 2013], Available from http://boinc.berkeley.edu/trac/wiki/W
orkShop13.

BoONA M, 2004, Combinatorics of permutations, CRC Press, Boca Raton (FL).

Bose RC, 1938, On the application of the properties of Galois fields to the problem of
constrution of hyper-graeco-latin squares, Sankhya: The Indian Journal of Statistics, 3,
pp- 323-338.

Bose RC, SHRIKHANDE SS & PARKER ET, 1960, Further results on the construction of

mutually orthogonal Latin squares and the falsity of Fuler’s conjecture, Canadian Journal
of Mathematics, 12, pp. 189-203.

Bose RC & SHRIKHANDE SS, 1959, On the falsity of Fuler’s conjecture about the non-
existence of two orthogonal Latin squares of order 4t + 2, Proceedings of the National
Academy of Sciences of the United States of America, 45(5), pp. 734-737.

73

74 REFERENCES

[15] BOSE R & NAIr K, 1941, On complete sets of Latin squares, Sankhya: The Indian Journal
of Statistics, 5(4), pp. 361-382.

[16] BRroOwN JW, 1968, Enumeration of Latin squares with application to order 8, Journal of
Combinatorial Theory, 5(2), pp. 177-184.

[17] Bruck RH & Ryser HJ, 1949, The nonexistence of certain finite projective planes,
Canadian Journal of Mathematics, 1(191), pp. 88-93.

[18] BRUNNER J, 1975, The Shockwave Rider, Harper & Row, New York (NY).

[19] Buck PD, 2011, Workunit size, [Online], [Cited September 29*", 2013], Available from
http://blog.gmane.org/gmane.comp.distributed.boinc.user/month=20110501.

[20) BuURrRGER AP, Kipp MP & VAN VUUREN JH, 2010, Enumerasie van self-ortogonale
Latynse vierkante van orde 10, LitNet Akademies (Natuurwetenskappe), 7(3), pp. 1-22.

[21] CAYLEY A, 1890, On Latin squares, Messenger of Mathematics, 19, pp. 135-137.

[22] CERN, 2013, LHC@Home, [Online], [Cited June 12", 2013], Available from http://1h
cathome.web.cern.ch/.

[23] CLIMATEPREDICTION.NET, 2003, climateprediction.net — The world’s largest climate fore-
casting experiment for the 21st century, [Online], [Cited June 12*%, 2013], Available from
http://www.climateprediction.net/.

[24] CorBOURN CJ & Dinitz JH, 2006, Handbook of combinatorial designs, Chapman &
Hall/CRC, Boca Raton (FL).

[25] COMPUTATION INSTITUTE, 2013, Globus Toolkit, [Online], [Cited July 21%¢, 2013], Avail-
able from http://www.globus.org/.

[26] CornNUEJOLS G, KARAMANOV M & L1 Y, 2006, Early estimates of the size of branch-
and-bound trees, INFORMS Journal on Computing, 18(1), pp. 86-96.

[27] CORPORATION SGI, 1997, OpenGL — The industry’s foundation for high performing
graphics, [Online], [Cited June 14*" 2013], Available from http://www.opengl.org/.

[28] DENEs J & KEEDWELL AD, 1991, Latin squares: New developments in the theory and
applications, North Holland, New York (NY).

[29] DENEs J & KEEDWELL AD, 1974, Latin squares and their applications, English Univer-
sities Press, London.

[30] DISTRIBUTED.NET, 1997, distributed.net, [Online], [Cited June 12", 2013], Available
from http://www.distributed.net/.

[31] ERDOS P, 1977, A note of welcome, Journal of Graph Theory, 1(1), pp. 3.

[32] EULER L, 1782, Recherches sur une nouvelle espéce de quarrés magiques, Verhandelingen
uitgegeven door het zeeuwsch Genootschap der Wetenschappen te Vlissingen, 9, pp. 85—
239.

[33] EULER L, 1849, De quadratis magicis, Commentationes Arithmeticae, 2, pp. 593-602.

[34] EvaNs D, 2011, The internet of things — How the next evolution of the internet is changing
everything, (Unpublished) Technical Report, Cisco Internet Business Solutions Group.

[35] Fanc W, 2013, BOINC volunteer community in China, [Online], [Cited September 25,
2013], Available from http://boinc.berkeley.edu/trac/wiki/WorkShop13.

[36] FIsHER RA, 1942, Completely orthogonal 9 X 9 squares. A correction, Annals of Eugenics,
11, pp. 402.

[37] FIsHER RA, 1925, Statistical methods for research workers, Oliver & Boyd, Edinburgh.

REFERENCES 75

FisHER RA, 1935, The design of experiments, Oliver & Boyd, Edinburgh.
FisHER RA & YATES F, 1934, The 6 x 6 Latin squares, 30, pp. 492-507.

FosTER I & KESSELMAN C (EDs), 1999, The grid: Blueprint for a new computing in-
frastructure, Morgan Kaufmann Publishers Inc., San Francisco (CA).

FREE SOFTWARE FOUNDATION, 2007, Bash 4.2, [Online], [Cited September 29", 2013],
Available from http://ftp.gnu.org/gnu/bash/bash-3.2.48.tar.gz.

FroLov M, 1890, Recherches sur les permutations carrees, Chateau de la Grave, Bonzac.

GARDNER M, 2000, Modeling mathematics with playing cards, The College Mathematics
Journal, 31(3), pp. 173-177.

GEPNER P & KowAaLik MF, 2006, Multi-core processors: New way to achieve high sys-
tem performance, Proceedings of the International Symposium on Parallel Computing in
Electrical Engineering, Bialystok, pp. 9-13.

GUNTHER S, 1876, Mathematisch-historiche Missellen 1I, Die magischen quadrate bei
Bauss, Journal of Mathematical Physics, 21, pp. 61-64.

HaLL M, SwirT JD & WALKER RJ, 1956, Uniqueness of the projective plane of order
eight, Mathematical Tables and Other Aids to Computation, 10(56), pp. 186-194.

HAves B, 1998, Computing science Collective wisdom, American Scientist, 86(2), pp.
118-122.

Hsiao MY, BossEN DC & CHIEN RT, 1970, Orthogonal Latin square codes, IBM Journal
of Research and Development, 14(4), pp. 390-394.

INTERNATIONAL BUSINESS MACHINES CORPORATION, 2013, World Community Grid —
Technology solving problems, [Online], [Cited June 12", 2013], Available from http :
//www.worldcommunitygrid.org/.

KEEDWELL AD, 2000, Designing tournaments with the aid of Latin squares: a presentation
of old and new results, Utilitas Mathematica, 58, pp. 65-86.

KHRONOS GROUP, 2013, The open standard for parallel programming of heterogeneous
systems, [Online], [Cited June 12", 2013], Available from http://www.khronos.org/ope
ncl/.

Kipp MP, 2010, A tabu-search for minimising the carry-over effects value of a round-robin
tournament, ORiON, 26(2), pp. 125-141.

Kipp MP, 2012, On the existence and enumeration of sets of two or three mutually or-
thogonal Latin squares with application to sports tournament scheduling, PhD thesis, Stel-
lenbosch University, Stellenbosch.

KnutH DE, 1975, Estimating the efficiency of backtrack programs, Mathematics of com-
putation, 29(129), pp. 122-136.

Lam CWH, 1991, The search for a finite projective plane of order 10, American Mathe-
matical Monthly, 98(4), pp. 305-318.

LaywiNE CF & MULLEN GL, 1998, Discrete mathematics using Latin squares, Wiley &
Sons, New York (NY).

MACINNES C, 1907, Finite planes with less than 8 points on a line, American Mathematics
Monthly, 14, pp. 171-174.

MAcCMAHON P, 1898, A new method in combinatory analysis, with applications to Latin
squares and associated questions, Transcripts of the Cambridridge Philosophical Society,
16, pp. 262—290.

76 REFERENCES

[59] MANN HB, 1942, The construction of orthogonal Latin squares, The Annals of Mathe-
matical Statistics, 13(4), pp. 418-423.

[60] MAX PLANCK INSTUTE FOR GRAVITAIONAL PHYSICS, 2013, Einstein@Home on Android
devices, [Online], [Cited July 18", 2013], Available from http://www.aei.mpg.de/287641/
boinc_android.

[61] McKay BD, 2014, Combinatorial data, [Online], [Cited February , Available from http:
//cs.anu.edu.au/~bdm/data/latin.html.

[62] McKaAy BD, MEYNERT A & MYRvOLD W, 2007, Small Latin squares, quasigroups, and
loops, Journal of Combinatorial Designs, 15(2), pp. 98-119.

[63] MERSENNE RESEARCH I, 2013, Great Internet Mersenne Prime Search, [Online], [Cited
March 28", 2013], Available from http://www.mersenne.org/.

[64] MESSAGE PASSING INTERFACE FORUM, 2013, MPI, [Online], [Cited July 215, 2013],
Available from http://www.mpi-forum.org/.

[65] MinNICK RC, ELspas B & SHORT RA, 1963, Symmetric Latin squares, IEEE Transac-
tions on Electronic Computers, 12(2), pp. 130-131.

[66] MiINNICK RC & HAYNES JL, 1962, Magnetic core access switches, IRE Transactions on
Electronic Computers, 11(3), pp. 352-368.

[67] MOBITHINKING, 2013, Global mobile statistics 2013 Part A: Mobile subscribers; handset
market share; mobile operators, [Online], [Cited May 6", 2013], Available from http:
//mobithinking.com/mobile-marketing-tools/latest-mobile-stats/.

[68] NAPSTER L, 2001, Napster, [Online|, [Cited July 21%%, | Available from http://www.nap
ster.com.

[69] NORDUGRID, 2013, Advanced Resource Connector, [Online], [Cited July 2274, 2013], Avail-
able from http://www.nordugrid.org/arc/.

[70] NorrtoON DA, 1952, Groups of orthogonal row-Latin squares, Pacific Journal of Mathe-
matics, 2(3), pp. 335-341.

[71] NorroN HW, 1939, The 7 x 7 squares, Annals of Eugenics, 9(3), pp. 269-307.

[72] NVIDIA CORPORATION, 2013, CUDA Parallel computing platform, [Online], [Cited June
120 2013], Available from http://www.nvidia.com/object/cuda home new.html.

[73] OPENMP ARCHITECTURE REVIEW BOARD, 2013, The OpenMP API specification for
parallel programming, [Online], [Cited July 215, 2013], Available from http://www.openm
p-org/wp/.

[74] ORACLE, 2013, Oracle Grid Engine, [Online], [Cited July 22", 2013], Available from
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html.

[75] ORAM A, 2001, Peer-to-peer: Harnessing the benefits of a disruptive technologies, O'Reilly
Media, Inc., Newtown (MA).

[76) OWENS P & PREECE D, 1995, Complete sets of pairwise orthogonal Latin squares of order
9, Journal of Combinatorial Mathematics and Combinatorial Computing, 18, pp. 83-96.

[77] PANDE LAB, 2013, Folding@Home, [Online], [Cited June 12", 2014], Available from http:
//folding.stanford.edu/.

[78] PARKER ET, 1959, Construction of some sets of mutually orthogonal Latin squares, Pro-
ceedings of the American Mathematical Society, 10(6), pp. 946-949.

[79] PurbpOM PW, 1978, Tree size by partial backtracking, SIAM Journal on Computing, 7(4),

pp. 481-491.

REFERENCES 77

[80]
[81]
[82]
[83]
[84]
[85]
[36]
[87]
[38]
[89]
[90]

[91]

[92]

[93]

PYTHON SOFTWARE FOUNDATION, 1990, Python programming language — Official web-
site, [Online], [Cited September 29'%, 2013], Available from http://www.python.org/.

REED K, 2013, Results of the WCG User Participation Study, [Online], [Cited September
250 2013], Available from http://boinc.berkeley.edu/trac/wiki/WorkShop13.

RENDERFARMING.NET, 2004, BURP — The big and ugly rendering project, [Online],
[Cited June 14", 2014], Available from http://burp.renderfarming.net/.

RoBinsoN DF, 1981, Constructing an annual round-robin tournament played on neutral
grounds, Mathematical Chronicle, 10, pp. 73-82.

RoseNBAUM DJ, 2013, Bidirectional Collision Detection and Faster Deterministic Iso-
morphism Testing, arXiv preprint arXiv:1304.3935.

SADE A, 1948, Enumeration des carrés latins: Application au 7e ordre, conjecture pour
les ordres supérieurs, Published privately.

SCHONHARDT E, 1930, Uber lateinische Quadrate und Unionen, Journal fiir die reine und
angewandte Mathematik, 163, pp. 183-230.

SHIRKY C, 2000, What is P2P... and what isn’t, [Online], [Cited June 14", 2013], Available
from http://www.openp2p.com/pub/a/p2p/2000/11/24/shirkyl-whatisp2p.html.

SHOCH JF & Hupp JA, 1982, The “worm” programs — Early experience with a distributed
computation, Communications of the Association of Computing Machinery, 25(3).

STINSON DR & KREHER DL, 1999, Combinatorial algorithms: generation, enumeration,
and search, CRC Press, Boca Raton (FL).

TARRY G, 1900, Le probléme des 36 officiers, Association Frangaise pour ’avancement
des sciences.

THAIN D, TANNENBAUM T & LivNy M, 2005, Distributed computing in practice: The

Condor experience, Concurrency and Computation: Practice and Experience, 17(2), pp.
323-356.

UNIVERSITY OF CALIFORNIA, 2013, BOINC: Open-source software for volunteer com-
puting and grid computing, [Online], [Cited March 30", 2013], Available from http :
//boinc.berkeley.edu/.

UNIVERSITY OF WISCONSIN-MADISON, 2013, HT'Condor — High throughput computing,
[Online], [Cited November 7*", 2013], Available from http://research.cs.wisc.edu/htc
ondor/.

UPLINGER K, 2013, Informal discussion on the future of BOINC in China, 9th BOINC
workshop, Grenoble.

VEBLEN O & MACLAGAN-WEDDERBURN J, 1907, Non-Desarguesian and non-Pascalian
geometries, Transactions of the American Mathematical Society, 8(3), pp. 379-388.

WaLLis WD & GEORGE JC, 2011, Introduction to combinatorics, CRC Press, Boca Raton
(FL).

WELLS MB, 1967, The number of Latin squares of order eight, Journal of Combinatorial
Theory, 3(1), pp. 98-99.

ZUCKERBERG M, 2004, Facebook, [Online], [Cited October 14", 2013], Available from
http://www.facebook.com.

